ubuntu18.04 OpenGL开发(显示YUV)

源码参考:https://download.csdn.net/download/weixin_55163060/88382816

安装opengl库

sudo apt install libglu1-mesa-dev freeglut3-dev mesa-common-dev
安装opengl工具包
sudo apt install mesa-utils
检查opengl版本信息(桌面终端执行)
sudo glxinfo | grep "OpenGL version"
显示:OpenGL version string: 3.3 (Compatibility Profile) Mesa 20.0.8
安装glfw窗口管理器
sudo apt-get install cmake xorg-dev libglu1-mesa-dev
wget https://sourceforge.net/projects/glfw/files/glfw/3.3.5/glfw-3.3.5.zip(wget https://github.com/glfw/glfw/releases/download/3.3.5/glfw-3.3.5.zip)
unzip glfw-3.3.5.zip
cd glfw-3.3.5
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j8
sudo make install
【window.c】 
#include <GLFW/glfw3.h>
#include <stdio.h>int main(void)
{GLFWwindow* window;/* Initialize the library */if (!glfwInit())return -1;/* Create a windowed mode window and its OpenGL context */window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);if (!window){glfwTerminate();return -1;}/* Make the window's context current */glfwMakeContextCurrent(window);/* Loop until the user closes the window */while (!glfwWindowShouldClose(window)){//glClearColor()命令指定了清除背景时用的颜色值,这里的(1,0,0,1)代表RGB中的红色,末尾的1表示不透明度glClearColor(1.0, 0.0, 0.0, 1.0);
        /* Render here */glClear(GL_COLOR_BUFFER_BIT);/* Swap front and back buffers */glfwSwapBuffers(window);/* Poll for and process events */glfwPollEvents();}glfwTerminate();return 0;
}
编译
gcc -o window window.c -lglfw3 -lGL -lX11 -lm -lpthread -ldl
执行显示一个红色窗口
【linmath.h】
https://github.com/datenwolf/linmath.h/blob/master/linmath.h
一个精简的线性数学库,旨在进行图形编程。 支持vec3,vec4,mat4x4和四元数
【GLAD库】(初始化后调用gl函数编译不会报错)
https://glad.dav1d.de/
GLAD是用来管理OpenGL的函数指针的,所以在调用任何OpenGL的函数之前我们需要初始化GLAD。GLAD也可以使OpenGL基础渲染变得简单。
【triangle.c】
//! [code]
#include "glad.h"
#define GLAD_GL_IMPLEMENTATION
#include <GL/gl.h>
//#include "glad.h"
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>#include "linmath.h"#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>typedef struct Vertex
{vec2 pos;vec3 col;
} Vertex;static const Vertex vertices[3] =
{{ { -0.6f, -0.4f }, { 1.f, 0.f, 0.f } },{ {  0.6f, -0.4f }, { 0.f, 1.f, 0.f } },{ {   0.f,  0.6f }, { 0.f, 0.f, 1.f } }
};static const char* vertex_shader_text =
"#version 330\n"
"uniform mat4 MVP;\n"
"in vec3 vCol;\n"
"in vec2 vPos;\n"
"out vec3 color;\n"
"void main()\n"
"{\n"
"    gl_Position = MVP * vec4(vPos, 0.0, 1.0);\n"
"    color = vCol;\n"
"}\n";static const char* fragment_shader_text =
"#version 330\n"
"in vec3 color;\n"
"out vec4 fragment;\n"
"void main()\n"
"{\n"
"    fragment = vec4(color, 1.0);\n"
"}\n";static void error_callback(int error, const char* description)
{fprintf(stderr, "Error: %s\n", description);
}static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)glfwSetWindowShouldClose(window, GLFW_TRUE);
}int main(void)
{glfwSetErrorCallback(error_callback);if (!glfwInit())exit(EXIT_FAILURE);glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);GLFWwindow* window = glfwCreateWindow(640, 480, "OpenGL Triangle", NULL, NULL);if (!window){glfwTerminate();exit(EXIT_FAILURE);}glfwSetKeyCallback(window, key_callback);glfwMakeContextCurrent(window);
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){return -1;}glfwSwapInterval(1);// NOTE: OpenGL error checks have been omitted for brevityGLuint vertex_buffer;glGenBuffers(1, &vertex_buffer);glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);const GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);glShaderSource(vertex_shader, 1, &vertex_shader_text, NULL);glCompileShader(vertex_shader);const GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);glShaderSource(fragment_shader, 1, &fragment_shader_text, NULL);glCompileShader(fragment_shader);const GLuint program = glCreateProgram();glAttachShader(program, vertex_shader);glAttachShader(program, fragment_shader);glLinkProgram(program);const GLint mvp_location = glGetUniformLocation(program, "MVP");const GLint vpos_location = glGetAttribLocation(program, "vPos");const GLint vcol_location = glGetAttribLocation(program, "vCol");GLuint vertex_array;glGenVertexArrays(1, &vertex_array);glBindVertexArray(vertex_array);glEnableVertexAttribArray(vpos_location);glVertexAttribPointer(vpos_location, 2, GL_FLOAT, GL_FALSE,sizeof(Vertex), (void*) offsetof(Vertex, pos));glEnableVertexAttribArray(vcol_location);glVertexAttribPointer(vcol_location, 3, GL_FLOAT, GL_FALSE,sizeof(Vertex), (void*) offsetof(Vertex, col));while (!glfwWindowShouldClose(window)){int width, height;glfwGetFramebufferSize(window, &width, &height);const float ratio = width / (float) height;glViewport(0, 0, width, height);glClear(GL_COLOR_BUFFER_BIT);mat4x4 m, p, mvp;mat4x4_identity(m);mat4x4_rotate_Z(m, m, (float) glfwGetTime());mat4x4_ortho(p, -ratio, ratio, -1.f, 1.f, 1.f, -1.f);mat4x4_mul(mvp, p, m);glUseProgram(program);glUniformMatrix4fv(mvp_location, 1, GL_FALSE, (const GLfloat*) &mvp);glBindVertexArray(vertex_array);glDrawArrays(GL_TRIANGLES, 0, 3);glfwSwapBuffers(window);glfwPollEvents();}glfwDestroyWindow(window);glfwTerminate();exit(EXIT_SUCCESS);
}//! [code]
编译
gcc -o triangle glad.c triangle.c -lglfw3 -lGL -lX11 -lm -lpthread -ldl
执行程序显示旋转的三角形
【YUV描述】
一般RGB用于渲染,YUV用于传输。
YUV4:4:4:完全采用表示每个像素点都有一个Y,U,V。一个YUV占 8+8+8 = 24bits,3个字节。
YUV4:2:2: 就是2:1的水平取样,垂直完全采样,表示水平的两个像素有两个Y但是只有一个U一个V的采用格式。一个YUV占 8+4+4 = 16bits 2个字节。
YUV4:2:0:就是2:1的水平取样,2:1的垂直采样,表示上下左右四个像素点有4个Y但是只取一个U和一个V,一个YUV占 8+2+2 = 12bits 1.5个字节
planar的YUV格式表示先连续存储所有像素点的Y,再紧接着存储所有的U,再就是V。Y、U和V组件存储为三个独立的数组中。
packed的YUV格式表示每个像素点的YUV是连续交替存储的,先存储像素点1的YUV再存在像素点2的YUV像素点。Y、U和V组件存储在一个数组中。每个像素点的Y,U,V是连续交错存储的
YUV420P(YU12和YV12)格式
YU12:安卓的模式。存储顺序是先存Y,再存U,最后存V。YYYYYYYY UUVV (I420格式)
YV12:存储顺序是先存Y,再存V,最后存U。YYYYYYYY VVUU
YUV420SP(NV12和NV21)格式
NV12 是 IOS 中有的模式,它的存储顺序是先存 Y 分量,再 UV 进行交替存储。
NV21 是 安卓 中有的模式,它的存储顺序是先存 Y 分量,在 VU 交替存储
【h264转YUV命令】
ffmpeg -i C:\Users\Administrator\Desktop\test.h264 -y -an -frames 1 -s 1920x1080 out.yuv
pause
【GLSL】
OpenGL着色语言(OpenGL Shading Language)是用来在OpenGL中着色编程的语言,也即开发人员写的短小的自定义程序,他们是在图形卡的GPU (Graphic Processor Unit图形处理单元)上执行的,代替了固定的渲染管线的一部分,使渲染管线中不同层次具有可编程性。比如:视图转换、投影转换等。GLSL(GL Shading Language)的着色器代码分成2个部分:Vertex Shader(顶点着色器)和Fragment(片断着色器),有时还会有Geometry Shader(几何着色器)。负责运行顶点着色的是顶点着色器。它可以得到当前OpenGL 中的状态,GLSL内置变量进行传递。GLSL其使用C语言作为基础高阶着色语言,避免了使用汇编语言或硬件规格语言的复杂性。
【yuv_show.cpp】
#include<string>
#include<fstream>
#include<sstream>
#include<iostream>
#include<stdio.h>
#include "glad.h"
#include <GLFW/glfw3.h>typedef unsigned char BYTE;
const unsigned int SCR_WIDTH = 500;
const unsigned int SCR_HEIGHT = 600;
const int len = 1920*1080 * 3/2;
BYTE YUVdata [len];unsigned int VBO = 0;
unsigned int VAO = 0;
unsigned int EBO = 0;
unsigned int texturePIC = 0;
int shaderProgram = 0;GLuint texIndexarray[3];
GLuint texUniformY = 99;
GLuint texUniformU = 99;
GLuint texUniformV = 99;void LoadPicture()
{glGenTextures(3, texIndexarray);//生成三个纹理索引glBindTexture(GL_TEXTURE_2D, texIndexarray[0]);//为bind的纹理设置环绕,过滤方式glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);glBindTexture(GL_TEXTURE_2D, texIndexarray[1]);//为bind的纹理设置环绕,过滤方式glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);glBindTexture(GL_TEXTURE_2D, texIndexarray[2]);//为bind的纹理设置环绕,过滤方式glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);//使用着色器程序,返回采样器的序号glUseProgram(shaderProgram);//该语句必须要有;安装 指定着色器程序texUniformY = glGetUniformLocation(shaderProgram, "dataY");texUniformU = glGetUniformLocation(shaderProgram, "dataU");texUniformV = glGetUniformLocation(shaderProgram, "dataV");----------加载数据--------------------------------------------------------FILE* fp = fopen("./out.yuv","rb+");//I420int returns  =fread(YUVdata,1,len,fp);int w = 1920;int h = 1080;int ysize = w*h;int uvsize = w * h / 4;void* uptr = &YUVdata[ysize];void* vptr = &YUVdata[ysize * 5 / 4];//---------------------------------------------------------------------------glActiveTexture(GL_TEXTURE0);glBindTexture(GL_TEXTURE_2D, texIndexarray[0]);// texindexarray[0] =1//使用GL_red表示单通道,glfw3里边没有YUV那个GL属性;glTexImage2D(GL_TEXTURE_2D, 0 , GL_RED, w, h ,0, GL_RED,GL_UNSIGNED_BYTE ,YUVdata);glUniform1i(texUniformY,0);                //通过 glUniform1i 的设置,保证每个 uniform 采样器对应着正确的纹理单元;注意这里不能用tesindexarray[0];glActiveTexture(GL_TEXTURE1);glBindTexture(GL_TEXTURE_2D, texIndexarray[1]);glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, w/2, h/2, 0, GL_RED, GL_UNSIGNED_BYTE,uptr);glUniform1i(texUniformU, 1);glActiveTexture(GL_TEXTURE2);glBindTexture(GL_TEXTURE_2D, texIndexarray[2]);glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, w/2, h/2, 0, GL_RED, GL_UNSIGNED_BYTE,vptr);glUniform1i(texUniformV,2);glUseProgram(0);
}void render()
{glBindVertexArray(VAO);glUseProgram(shaderProgram);glDrawElements(GL_TRIANGLES,6,GL_UNSIGNED_INT,0);//glDrawArrays(GL_TRIANGLE_FAN,0,4);也可glUseProgram(0);glBindVertexArray(0);
}void initmodule()
{//做个一模型;正方形;映射了顶点坐标和纹理坐标的对应关系float vertexs[] = {//顶点坐标-------纹理坐标(屏幕坐标翻转)1.0f,  1.0f, 0.0f,  1.0f, 0.0f,   1.0f, -1.0f, 0.0f,  1.0f, 1.0f,   -1.0f, -1.0f, 0.0f,  0.0f, 1.0f,   -1.0f,  1.0f, 0.0f,  0.0f, 0.0f    };//一个正方形是由两个三角形得来的;记录顶点的索引顺序unsigned int indexs[] = {0,1,3,1,2,3,};//做VAOglGenVertexArrays(1,&VAO);glBindVertexArray(VAO);//做VBOglGenBuffers(1, &VBO);glBindBuffer(GL_ARRAY_BUFFER, VBO);//创建显存空间glBufferData(GL_ARRAY_BUFFER,sizeof(vertexs), vertexs, GL_STATIC_DRAW);//设置索引缓冲glGenBuffers(1,&EBO);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,EBO);glBufferData(GL_ELEMENT_ARRAY_BUFFER,sizeof(indexs),indexs,GL_STATIC_DRAW);    //加载纹理图片,生成纹理LoadPicture();//设置第0个锚点,3个点,不需要归一化,跨度5个float可以读下一个点glVertexAttribPointer(0,3,GL_FLOAT,GL_FALSE,5*sizeof(float),(void*)0);//打开顶点glEnableVertexAttribArray(0);//纹理属性设置,纹理在第一个锚点上(指定顶点数据)glVertexAttribPointer(1,2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));//打开纹理glEnableVertexAttribArray(1);//解除绑定VBOglBindBuffer(GL_ARRAY_BUFFER,0);//解绑VAOglBindVertexArray(0);}void initshader(const char* verpath,const char* fragpath)
{//编译shader,并记录shaderIDstd::string VerCode("");std::string fregCode("");//读文件std::ifstream  vShaderFile;std::ifstream  fShaderFile;vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);try{vShaderFile.open(verpath);fShaderFile.open(fragpath);std::stringstream vsstream, fsstream;vsstream << vShaderFile.rdbuf();fsstream << fShaderFile.rdbuf();VerCode = vsstream.str();fregCode = fsstream.str();}catch (const std::exception&){std::cout << "read file error" << std::endl;}const char* vshader = VerCode.c_str();const char* fshader = fregCode.c_str();//shader 编译连接unsigned int vertexID = 0, fragID = 0;char infoLog[512];//存储错误信息int  successflag = 0;vertexID = glCreateShader(GL_VERTEX_SHADER);glShaderSource(vertexID,1,&vshader,NULL );glCompileShader(vertexID);//获取编译是否成功glGetShaderiv(vertexID,GL_COMPILE_STATUS,&successflag);if (!successflag){glGetShaderInfoLog(vertexID,512,NULL,infoLog);std::string errstr(infoLog);std::cout << "v shader err"<<infoLog;}//fragfragID = glCreateShader(GL_FRAGMENT_SHADER);glShaderSource(fragID, 1, &fshader, NULL);glCompileShader(fragID);//获取编译是否成功glGetShaderiv(fragID, GL_COMPILE_STATUS, &successflag);if (!successflag){glGetShaderInfoLog(fragID, 512, NULL, infoLog);std::string errstr(infoLog);std::cout << "f shader err"<<infoLog;}//链接shaderProgram = glCreateProgram();glAttachShader(shaderProgram,vertexID);glAttachShader(shaderProgram,fragID);glBindAttribLocation(shaderProgram, 0, "aPos");glBindAttribLocation(shaderProgram, 1, "texCoord");glLinkProgram(shaderProgram);glGetProgramiv(shaderProgram,GL_LINK_STATUS,&successflag);if (!successflag){glGetShaderInfoLog(shaderProgram, 512, NULL, infoLog);std::string errstr(infoLog);std::cout << "link error";}//编译完成后,可以把中间的步骤程序删除glDeleteShader(vertexID);glDeleteShader(fragID);
}
void processInput(GLFWwindow *window)
{if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS){//将窗口设置为关闭,跳出循环glfwSetWindowShouldClose(window, true);}
}void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{glViewport(0, 0, width, height);
}int main()
{//glfw初始化glfwInit();glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);//glfw创建窗口GLFWwindow* window = glfwCreateWindow(500, 600, "LearnOpenGL", NULL, NULL);if (window == NULL){printf("创建窗口失败");//终止glfwTerminate();return -1;}//显示窗口glfwMakeContextCurrent(window);//设置回调,当窗口大小调整后将调用该回调函数glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);// glad初始化if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){printf("加载失败");return -1;}initshader("vertexShader.glsl", "fragmentShader.glsl");//先编译着色器initmodule();// 使用循环达到循环渲染效果while (!glfwWindowShouldClose(window)){//自定义输入事件processInput(window);glClearColor(0.0f,0.0f,0.0f,1.0f);glClear(GL_COLOR_BUFFER_BIT);render();//交互缓冲区,否则显示空白glfwSwapBuffers(window);//输入输出事件,否则无法对窗口进行交互glfwPollEvents();}//终止渲染 关闭并清理glfw本地资源glfwTerminate();return 0;
}
【vertexShader.glsl】
#version 330 core
layout(location = 0) in vec3 aPos;
layout(location = 1) in vec2 texCoord; out vec2 TexCoord;
void main()
{gl_Position = vec4(aPos.x,aPos.y,aPos.z,1.0);TexCoord = texCoord;
};
【fragmentShader.glsl】
#version 330 core
layout(location = 0) out vec4 FragColor;
in vec2 TexCoord;
uniform sampler2D dataY;
uniform sampler2D dataU;
uniform sampler2D dataV;
vec3 yuv;
vec3 rgb;
void main()
{yuv.x = texture2D(dataY, TexCoord).r-0.0625;yuv.y = texture2D(dataU, TexCoord).r-0.5;yuv.z = texture2D(dataV, TexCoord).r-0.5;rgb = mat3(1,              1,      1,     0,       -0.18732, 1.8556,    1.57481, -0.46813,      0) * yuv;   FragColor = vec4(rgb.x, rgb.y,rgb.z,1); 
};
【编译】
g++ -o yuv_show glad.c yuv_show.cpp -lglfw3 -lGL -lX11 -lm -lpthread -ldl
【运行】
1、报错:v shader err0:2(1): error: shader output explicit location requires GL_ARB_separate_shader_objects extension or GLSL 4.20
原因:fragmentShader.glsl和vertexShader.glsl搞反了
2、报错:段错误
解决方法:sudo ./yuv_show
注:render()函数中增加LoadPicture()并修改其为读取不同的yuv数据可以实现视频流的播放。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/144115.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UWB技术在汽车智能制造的应用

返修区车辆管理项目 应用背景 在车辆总装生产线中&#xff0c;车辆下线后检测与返修是最后一个关键环节&#xff0c;整车一旦下线&#xff0c;由于流水线装配工艺、来料等原因&#xff0c;可能会出现部分整车存在瑕疵&#xff0c;进而进入返修区域待检。由于可能出现问题的不确…

【EI会议征稿】第三届机械、建模与材料工程国际学术会议(I3ME 2023)

第三届机械、建模与材料工程国际学术会议&#xff08;I3ME 2023&#xff09; 2023 3rd International Conference on Mechanical, Modeling and Materials Engineering 第三届机械、建模与材料工程国际学术会议&#xff08;I3ME 2023&#xff09;将于2023年12月1-3日在中国长春…

五子棋AI算法和开局定式(直指13式)破解

五子棋AI算法和开局定式&#xff08; 直指13式 &#xff09;破解 先前发了几篇五子棋游戏程序设计的博文&#xff0c;设计了游戏程序&#xff0c;也设计了AI智能奕棋的算法&#xff0c;运行程序检测算法的可行性&#xff0c;完成人机模式游戏功能的设置。这还不够&#xff0c;…

十六.镜头知识之工业镜头的质量判断因素

十六.镜头知识之工业镜头的质量判断因素 文章目录 十六.镜头知识之工业镜头的质量判断因素1.分辨率(Resolution)2.明锐度(Acutance)3.景深(DOF)&#xff1a;4. 最大相对孔径与光圈系数5.工业镜头各参数间的相互影响关系5.1.焦距大小的影响情况5.2.光圈大小的影响情况5.3.像场中…

WebPack5进阶使用总结(二)

WebPack5进阶使用总结 1、处理js资源1.1、Eslint1.2、在webpack中使用Eslint1.3、Babel1.4、在webpack中使用 2、处理HTML资源3、开发服务器&自动化4、生产模式介绍5、Css处理5.1、Css兼容性处理5.2、合并配置5.3、Css压缩 配套视频&#xff1a;尚硅谷Webpack5入门到原理 配…

STM32H7系列MPU与CACHE以及RAM

一、启用cache 启用cache很简单&#xff0c;就是这两句&#xff0c;分别打开I-Cache和D-Cache&#xff0c;但是如果只使用这两句&#xff0c;再操作DMA和FLASH时就很有可能遇到问题&#xff0c;后面会具体说明。 SCB_EnableICache();//使能I-CacheSCB_EnableDCache();//使能D-…

Android studio “Layout Inspector“工具在Android14 userdebug设备无法正常使用

背景描述 做rom开发的都知道&#xff0c;“Layout Inspector”和“Attach Debugger to Android Process”是studio里很好用的工具&#xff0c;可以用来查看布局、调试系统进程&#xff08;比如setting、launcher、systemui&#xff09;。 问题描述 最进刚开始一个Android 14…

现代数据架构-湖仓一体

当前的数据架构已经从数据库、数据仓库&#xff0c;发展到了数据湖、湖仓一体架构&#xff0c;本篇文章从头梳理了一下数据行业发展的脉络。 上世纪&#xff0c;最早出现了关系型数据库&#xff0c;也就是DBMS&#xff0c;有商业的Oracle、 IBM的DB2、Sybase、Informix、 微软…

【数据结构初阶】六、线性表中的队列(链式结构实现队列)

相关代码gitee自取&#xff1a; C语言学习日记: 加油努力 (gitee.com) 接上期&#xff1a; 【数据结构初阶】五、线性表中的栈&#xff08;顺序表实现栈&#xff09;_高高的胖子的博客-CSDN博客 1 . 队列&#xff08;Queue&#xff09; 队列的概念和结构&#xff1a; 队列…

PSINS工具箱学习(一)下载安装初始化、SINS-GPS组合导航仿真、习惯约定与常用变量符号、数据导入转换、绘图显示

原始 Markdown文档、Visio流程图、XMind思维导图见&#xff1a;https://github.com/LiZhengXiao99/Navigation-Learning 文章目录 一、前言二、相关资源三、下载安装初始化1、下载PSINSyymmdd.rar工具箱文件2、解压文件3、初始化4、启动工具箱导览 四、习惯约定与常用变量符号1…

数据集笔记:2015上海地铁一卡通数据

数据地址&#xff1a;上海地铁数据_免费高速下载|百度网盘-分享无限制 (baidu.com) 数据介绍 上海2015年几天的地铁一卡通出入站信息 卡号、交易日期、交易时间、公交线路/地铁站点中文名称、行业名称(公交、地铁、出租、轮渡、PR停车场)、交易金额、交易性质(非优惠、优惠、…

No139.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

RNN模型与NLP应用(1/9):数据处理基础Data Processing Basics

文章目录 处理分类特征把分类特征转化为数值特征应用one-hot编码indice要从1开始而不能从0开始数据处理为什么使用one-hot向量 处理文本数据Step1&#xff1a;将文本分割成单词Step2&#xff1a;计算单词的频度按频度递减的方式排序 Step3&#xff1a;One-Hot编码 处理分类特征…

UE5 ChaosVehicles载具研究

一、基本组成 载具Actor类名称&#xff1a;WheeledVehiclePawn Actor最原始的结构 官方增加了两个摇臂相机&#xff0c;可以像驾驶游戏那样切换多机位、旋转观察 选择骨骼网格体、动画蓝图类、开启物理模拟 二、SportsCar_Pawn 角阻尼&#xff1a;物体旋转的阻力。数值越大…

前端架构师之02_ES6_高级

1 类和继承 1.1 class类 JavaScript 语言中&#xff0c;生成实例对象的传统方法是通过构造函数。 // ES5 创建对象 // 创建一个类&#xff0c;用户名 密码 function User(name,pass){// 添加属性this.name name;this.pass pass; } // 用 原型 添加方法 User.prototype.sho…

Docker下如何构建包含延迟插件的RabbitMQ镜像

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是 DevO…

FIPS 140简介

FIPS 140(Federal Information Processing Standards Publication 140)是美国联邦政府颁布的一系列密码学标准,用于评估和验证安全模块(如加密模块)的安全性。FIPS 140标准制定了一系列安全要求,以确保加密模块能够提供足够的安全性,以保护敏感数据。 与AES的关系是,A…

UE5 虚幻引擎 如何使用构造脚本(Construction Script)? 构造脚本的奥秘!

目录 1 构造脚本&#xff08;Construction Script&#xff09;1.1 介绍1.2 案例1&#xff1a;利用样条组件程序化生成树木1.2 案例2&#xff1a;利用样条组件和样条网格体组件程序化生成道路 1 构造脚本&#xff08;Construction Script&#xff09; 1.1 介绍 问题&#xff1a…

3D孪生场景搭建:模型阵列摆放

阵列摆放概念 阵列摆放是指将物体、设备或元件按照一定的规则和间距排列组合的方式。在工程和科学领域中&#xff0c;阵列式摆放常常用于优化空间利用、提高效率或增强性能。 阵列摆放通常需要考虑间距、角度、方向、对称性等因素&#xff0c;以满足特定的要求和设计目标。不同…

江西广电会展集团总经理李悦一行莅临拓世科技集团调研参观,科技璀璨AIGC掀新潮

在江西这片充满活力的土地上&#xff0c;数字经济如潮水般涌动&#xff0c;会展文化与科技的完美结合&#xff0c;正如新时代的璀璨繁星照亮夜空&#xff0c;更预示着一场AIGC创新的壮丽篇章即将展开。作为拓世科技集团的老朋友&#xff0c;江西广电多位领导多次莅临拓世科技集…