5+铁死亡+分型+WGCNA+机器学习分析

今天给同学们分享一篇铁死亡+分型+WGCNA+机器学习的生信文章“Identification of ferroptosis-related molecular clusters and genes for diabetic osteoporosis based on the machine learning”,这篇文章于2023年8月14日发表在Front Endocrinol (Lausanne)期刊上,影响因子为5.2。
f1760d97c1f69946c9f5c0c310a98c04.jpeg

糖尿病骨质疏松症在分子水平上表现出异质性。铁死亡是一种由脂质过氧化积累引起的可控细胞死亡形式,是多种疾病发病和发展的原因之一。本研究旨在从分子水平探讨糖尿病骨质疏松症中与铁死亡相关的分子亚型,并进一步阐明其潜在的分子机制。

4923a08d8188ed6be34daa14498c74fb.jpeg

图1 研究设计和分析流程图


1. 鉴定在糖尿病骨质疏松症中特异表达的 FRGs

使用 "limma "软件包对 GSE35958 中 4 个对照样本和 5 个骨质疏松症样本的表达谱数据进行归一化处理(图 2A、B)。根据P-Value<0.05和log2倍变化(FC)≥1,通过差异分析共鉴定出1102个DEGs,包括677个上调基因和425个下调基因(图2C)。作者从 CTD 数据库和 GeneCards 数据库中分别获得了 38253 和 14818 个糖尿病相关基因。259 个铁死亡相关基因(FRGs)来自 FerrDb 数据库。作者将 DEGs、糖尿病相关基因和铁质疏松相关基因重叠,得到了 15 个重叠基因,即与糖尿病骨质疏松症相关的 FRGs,如维恩图所示(图 2D)。通过绘制热图(图 2E),作者可以观察到与糖尿病骨质疏松症相关的 15 个 FRGs 在骨质疏松症样本和对照样本之间有显著的差异表达。为了明确这 15 个 FRGs 之间的关系,作者采用了 Spearman 相关性分析(图 2F)。此外,15 个 FRGs 在染色体上的定位也显示在循环图中(图 2G)。

bbc6c4afa79e567c595717755819a591.jpeg

图2 糖尿病骨质疏松症中的差异 FRGs 筛查


2.&nbsp;确定骨质疏松症中的铁死亡亚群

作者利用无监督聚类分析了与糖尿病骨质疏松症相关的 15 种 FRGs 在 42 个骨质疏松症样本中的表达情况,从而探索了骨质疏松症中的铁质疏松亚群。当共识矩阵的 k = 2 时,亚型的数量最为稳定,代表两个定义明确的亚型群(图 3A)。如图 3B 所示,k = 2 时的 CDF 曲线在一致性指数 0-1.0 范围内波动最小。CDF 图显示了 k 值变化时面积的相对变化(图 3C)。主成分分析(PCA)进一步证实了两个群组差异很大的结论(图 3D)。

19107a4958071a824b400fbf4680f821.jpeg

图3 骨质疏松症中基于 FRGs 的分子聚类识别


3.&nbsp;铁死亡亚群之间的差异

为了更好地理解两个铁质疏松亚群之间的区别,作者分析了两个亚群中15个FRGs的表达差异以及通路和生物活性的变化。两个亚型中 15 个 FRGs 的表达明显区别于对照组和骨质疏松症样本(图 4A)。亚型1中FBXW7、G6PD、MAPK3、PML PGD、SLC1A5、SQSTM1、TP53和YWHAE的表达水平较高,而亚型1中ALOX5、BAP1、BRD4、CDKN1A、EGFR和NNMT的表达水平较高(图4B)。GSVA 分析的生物功能结果表明,Cluster1 中含有核蛋白复合体、对创伤的反应和伤口愈合的表达下调,而 Cluster2 中神经发生、细胞对生物刺激的反应和端粒酶活性调控的表达上调(图 4C)。此外,Cluster1 的富集途径主要是上调,如结直肠癌、甲状腺癌和小细胞肺癌;而 Cluster2 则主要与下调途径相关,如基底细胞癌、亨廷顿氏病和肌萎缩侧索硬化症(图 4D)。这些结果表明,骨质疏松症患者的铁死亡亚型之间在 15 个 FRGs 的表达、富集通路和生物学作用方面存在显著差异。对于不同的铁死亡亚群,需要采取特定的治疗方法。

0befd7c43bf8fb3633116b2c49ff8a0c.jpeg

图4 两个铁死亡之间的差异分析


4.&nbsp;铁死亡群组之间的差异基因分析

根据基因表达谱,通过 WGCNA 算法构建了与铁死亡亚群联系最紧密的可能模块。如图 5A 所示,序列号为 GSM1369716 的样本被排除在外。保持无标度拓扑网络的理想软阈值被确定为 6(R2 = 0.85)(图 5B)。根据相关性聚类,对 15 个特征模块进行了分类,并赋予不同的颜色标签(图 5C)。在这些模块中,蓝色模块(4 591 个基因)与 Cluster1(R = -0.89)和 Cluster2(R = -0.89)的相关性最强(图 5D)。作者观察到蓝色模块与模块相关基因之间存在明显的相关性(cor = 0.91)(图 5E)。随后,作者使用 adj. P-Value < 0.05 和 |log2fold change (FC)| ≥ 1 作为临界值,鉴定了铁死亡亚群的 DEGs。共发现 1,376 个 DEGs,其中 265 个出现上调,1,111 个出现下调(图 5F-H )。

4a76463a4f382db585e26d39e05dccc5.jpeg

图5 铁死亡亚群间 DEGs 的鉴定


5.&nbsp;与糖尿病骨质疏松症相关的铁死亡亚群的 FRGs 综合分析

结合数据库和数据集中的基因,作者共获得了 17 个与糖尿病骨质疏松症铁死亡亚群相关的 FRGs(图 6A)。PCA 结果显示了 17 个与糖尿病骨质疏松症相关的 FRGs,这些 FRGs 有效地区分了两个骨质疏松症亚群(图 6B)。此外,与糖尿病骨质疏松症相关的 17 个 FRGs 的关系网络图显示,它们之间存在显著的正相关,有助于全面分析基因之间的相互关系(图 6C)。同时,如图 6D 所示,除 BNIP3 外,所有基因都在集群 1 中高表达。为了进一步研究与糖尿病骨质疏松症相关的 17 个 FRGs 的可能生物学功能和通路活性,作者进行了 GO 和 KEGG 富集分析。GO 富集分析的重要结果显示,17 个 FRGs 主要与细胞对外界刺激的反应、对氧化应激的反应和神经元凋亡过程有关(图 6E)。此外,根据 KEGG 富集分析,17 个 FRGs 主要参与各种经典信号通路,包括脂质和动脉粥样硬化、有丝分裂动物和内分泌抵抗(图 6F)。

351590b26434581e3966c0921d41e1c5.jpeg

图6 铁死亡亚群之间 FRGs 的综合分析


6.&nbsp;构建预测模型和确定关键基因

基于整个数据集,作者使用四种成熟的机器学习方法(LASSO、SVM RFE、Boruta 和 XGBoost)从 17 个 FRGs 中找到了与糖尿病骨质疏松症相关的重要基因。这些算法分别得到了 4、7、16 和 6 个基因(图 7A-E)。然后,作者利用 GSE56815 作为外部数据集,通过 ROC 曲线验证了四种机器学习算法的效率。四种算法的曲线下面积(AUC)值均大于 0.8,作者认为预测模型的结果是可靠的(图 7F)。IDH1 是所有四种算法的共同基因(图 7G)。考虑到所鉴定基因的准确性,作者用外部数据集 GSE56815 绘制了 ROC 曲线,结果显示预测效率很高(图 7H)。最终,通过四个高效预测模型,作者从 17 个 FRGs 中鉴定出 IDH1 作为糖尿病骨质疏松症亚型的前瞻性指标。

27d69ab2a719748390e9eb1645cb78fe.jpeg

图7 构建预测模型并确定关键基因


总结

总之,作者在糖尿病骨质疏松症中发现了两个铁死亡亚群,并确认了各自的显著特征。基于 17 个铁死亡反应基因的四个不同的机器学习预测模型(LASSO、XGBoost、Boruta 和 SVM)发现了能够区分糖尿病骨质疏松症亚型的铁死亡反应调节因子。最终,作为一种经外部数据集验证的铁死亡调节因子,IDH1有能力精确区分糖尿病骨质疏松症的分子亚型,这可能会为糖尿病骨质疏松症临床症状和预后异质性的病理生理学提供新的见解。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/144354.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Swift 周报 第三十八期

文章目录 前言新闻和社区苹果自研调制解调器芯片受挫&#xff1a;速度太慢容易过热&#xff0c;落后高通 3 年App Store 现已接受适用于最新版操作系统的 App 和游戏提交 提案通过的提案正在审查的提案驳回的提案 Swift论坛推荐博文话题讨论关于我们 前言 本期是 Swift 编辑组…

redis主从从,redis-7.0.13

redis主从从&#xff0c;redis-7.0.13 下载redis安装redis安装redis-7.0.13过程报错1、没有gcc&#xff0c;报错2、没有python3&#xff0c;报错3、[adlist.o] 错误 127 解决安装报错安装完成 部署redis 主从从结构redis主服务器配置redis启动redis登录redisredis默认是主 redi…

DEM格式转换:转换NSDTF-DEM国标数据格式为通用格式,使用ArcGIS工具转换NSDTF-DEM国标.dem文件为通用.tif格式。

DEM格式转换&#xff1a;转换NSDTF-DEM国标数据格式为通用格式&#xff0c;使用ArcGIS工具转换NSDTF-DEM国标.dem文件为通用.tif格式。 *.dem是一种比较常见的DEM数据格式&#xff0c;其有两种文件组织方式&#xff0c;即NSDTF-DEM和USGS-DEM。 &#xff08;1&#xff09;NSDT…

【Linux】网络原理

文章目录 &#x1f4d6; 前言1. 计算机内部的交流1.1 计算机之间的交流&#xff1a; 2. 协议2.1 网络分层&#xff1a;2.2 以打电话为例&#xff1a;2.3 OSI七层模型&#xff1a;2.4 TCP/IP&#xff1a; 3. 操作系统与网络的关系4. 报头与解包4.1 报头的作用&#xff1a; 5. 局…

IDEA Debug技巧大全,看完就能提升工作效率

作者简介 目录 1.行断点 2.方法断点 3.异常断点 4.字段断点 5.条件表达式 1.行断点 行断点就是平时我们在代码行旁边单击鼠标打上的断点&#xff0c;这个没有什么好说的。关键点在于很多人不知道的&#xff0c;行断点其实是可以右击选择是对改行的全部调用都生效&#xf…

最新影视视频微信小程序源码-带支付和采集功能/微信小程序影视源码PHP(更新)

源码简介&#xff1a; 这个影视视频微信小程序源码&#xff0c;新更新的&#xff0c;它还带支付和采集功能&#xff0c;作为微信小程序影视源码&#xff0c;它可以为用户 提供丰富的影视资源&#xff0c;包括电影、电视剧、综艺节目等。 这个小程序影视源码&#xff0c;还带有…

Opengl之抛光物

我们目前使用的光照都来自于空间中的一个点。它能给我们不错的效果&#xff0c;但现实世界中&#xff0c;我们有很多种类的光照&#xff0c;每种的表现都不同。将光投射(Cast)到物体的光源叫做投光物(Light Caster) 平行光 当一个光源处于很远的地方时&#xff0c;来自光源的…

使用LDA(线性判别公式)进行iris鸢尾花的分类

线性判别分析((Linear Discriminant Analysis &#xff0c;简称 LDA)是一种经典的线性学习方法&#xff0c;在二分类问题上因为最早由 [Fisher,1936] 提出&#xff0c;亦称 ”Fisher 判别分析“。并且LDA也是一种监督学习的降维技术&#xff0c;也就是说它的数据集的每个样本都…

Simulink仿真封装中的参数个对话框设置

目录 参数和对话框窗格 初始化窗格 文档窗格 为了更加直观和清晰的分析仿真&#xff0c;会将多个元件实现的一个功能封装在一起&#xff0c;通过参数对话框窗格&#xff0c;可以使用参数、显示和动作选项板中的对话框控制设计封装对话框。如图所示&#xff1a; 参数和对话框…

Flutter笔记:关于应用程序中提交图片作为头像

Flutter笔记 关于应用程序中提交图片作为头像 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133418554…

【数据库——MySQL】(12)过程式对象程序设计——存储过程

目录 1. 存储过程2. 局部变量3. 条件分支3.1 IF 语句3.2 CASE 语句 4. 循环语句4.1 WHILE 语句4.2 REPEAT 语句4.3 LOOP和LEAVE语句4.4 LOOP和ITERATE语句 5. 存储过程应用示例参考书籍 1. 存储过程 要创建存储过程&#xff0c;需要用到 CREATE 语句&#xff1a; CREATE PROCED…

《动手学深度学习 Pytorch版》 7.6 残差网络(ResNet)

import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2l7.6.1 函数类 如果把模型看作一个函数&#xff0c;我们设计的更强大的模型则可以看作范围更大的函数。为了使函数能逐渐靠拢到最优解&#xff0c;应尽量使函数嵌套&…

web:[极客大挑战 2019]LoveSQL

题目 打开页面显示如下 查看源代码&#xff0c;查到一个check.php&#xff0c;还是get传参 尝试账号密码输入 题目名为sql&#xff0c;用万能密码 1or 11# 或 admin or 11 给了一段乱码&#xff0c;也不是flag 查看字段数 /check.php?usernameadmin order by 3%23&pass…

PDF文件超出上传大小?三分钟学会PDF压缩

PDF作为一种流行的文档格式&#xff0c;被广泛用于各种场合&#xff0c;然而有时候PDF文件的大小超出了上传限制&#xff0c;这时候我们就需要采取一些措施来减小PDF文件的大小&#xff0c;下面就给大家分享几个方法&#xff0c;一起来学习下吧~ 方法一&#xff1a;嗨格式压缩大…

Acer宏碁笔记本暗影骑士轻刃AN715-51原装出厂Windows10系统工厂模式镜像

系统自带所有驱动、NITROSENSE风扇键盘灯控制中心、Office办公软件、出厂主题壁纸、系统属性Acer宏基专属的LOGO标志、 Acer Care Center、Quick Access等预装程序 下载链接&#xff1a;https://pan.baidu.com/s/1FDCP5EONlk0o12CYFXbhrg?pwdvazt 所需要工具&#xff1a;32G…

uni-app 实现凸起的 tabbar 底部导航栏

效果图 在 pages.json 中设置隐藏自带的 tabbar 导航栏 "custom": true, // 开启自定义tabBar(不填每次原来的tabbar在重新加载时都回闪现) 新建一个 custom-tabbar.vue 自定义组件页面 custom-tabbar.vue <!-- 自定义底部导航栏 --> <template><v…

网络基础(了解网络知识的前提)

前言 在正式学习网络之前&#xff0c;我们需要了解的一些关于计算机网络的基本知识&#xff0c;本文主要阐述这些基本知识&#xff0c;带着大家一步一步迈进互联网网络的世界&#xff1b; 一、局域网与广域网的概念 在正式了解这些概念的前提是我们要搞懂网络出现的意义&#x…

Uniapp实现APP云打包

一. 基础配置 二. APP图标配置 1. 点击浏览 选取图标(注&#xff1a;图片格式为png) 2. 点击自动生成所有图标并替换 三. 点击发行 并选择云打包 四. 去开发者中心获取证书 我这里是已经获取好的&#xff0c;没有获取的话&#xff0c;按照提示获取即可&#xff0c;非常简单…

Ubuntu系统Linux内核安装和使用

安装&#xff1a; 检查树莓派Linux版本&#xff0c;我的是6.1 uname -r 内核下载链接&#xff1a; Raspberry Pi GitHub 找对应版本下载 导入之后&#xff0c;解压安装即可 unzip linux-rpi-6.1.y.zip 其他内容 treee 指令安装 sudo apt-get install tree 使用这…

【ICCV 2023 Oral】High-Quality Entity Segmentation分享

为什么会看这篇文章呢&#xff1f;因为要搞所谓分割大模型&#xff0c;为什么要搞分割大模型&#xff0c;因为最终我们要搞得是&#xff0c;业内领先的全自动标注系统。&#xff08;标完都不需要人工再修正&#xff01;&#xff01;&#xff01;&#xff09; OK&#xff0c;仰…