LLM-TAP随笔——大语言模型基础【深度学习】【PyTorch】【LLM】

文章目录

  • 2.大语言模型基础
    • 2.1、编码器和解码器架构
    • 2.2、注意力机制
      • 2.2.1、注意力机制(`Attention`)
      • 2.2.2、自注意力机制(`Self-attention`)
      • 2.2.3、多头自注意力(`Multi-headed Self-attention`)
    • 2.3、transformer
    • 2.4、BERT
    • 2.5、GPT
    • 2.6、LLaMA

2.大语言模型基础

2.1、编码器和解码器架构

在这里插入图片描述

这个架构常用于编码器-解码器架构是一种常用于序列到序列(Seq2Seq)任务的深度学习架构。序列到序列的问题举例:NLP问题(机器翻译、问答系统和文本摘要)。

编码器(Encoder)
将输入形式编码成中间表达形式。
中间表示被称为“编码”或“特征”。
解码器(Decoder)
将中间表示解码成输出形式。
也会有额外的输入。为啥?
输入一些额外的信息来帮助解码器生成正确的输出序列。这些额外的信息可以是一些上下文信息,例如输入序列的长度、标点符号和语法结构等。

2.2、注意力机制

2.2.1、注意力机制(Attention

注意力机制允许模型在处理信息时更加灵活和智能地选择性地关注输入的不同部分,从而提高了模型的性能和表现力。
相比于全连接层、汇聚层,注意力机制就多了个自主提示。
self-attention 是复杂化的CNN,因此也可以退化成CNN。
在这里插入图片描述

组件

  • query(自主提示):人为引导控制。
  • key(非自主提示/不由自主):被物体的突出易见特征 吸引。
  • value:与key配对。
  • 注意力权重
  • 注意力分数(Attention Scores):α(x, x i x_i xi)
  • 注意力输出(Attention Output)

    在这里插入图片描述

注意力计算规则
f ( x ) = ∑ i = 1 n α ( x , x i ) y i = ∑ i = 1 n s o f t m a x ( − 1 2 ( x − x i ) 2 ) y i f(x) = \sum_{i=1}^nα(x,x_i)y_i = \sum_{i=1}^{n} softmax(-\frac{1}{2}(x-x_i)^2)y_i f(x)=i=1nα(x,xi)yi=i=1nsoftmax(21(xxi)2)yi
其中, x = q u e r y , x i = k e y , y i = v a l u e x = query,x_i= key,y_i = value x=queryxi=keyyi=value

在这里插入图片描述

2.2.2、自注意力机制(Self-attention

自注意力(Self-Attention)是一种注意力机制的特殊情况,其中 Query、Key 和 Value 都来自相同的输入序列。
考虑到整个句子的资讯,FC 受到参数体量限制,提出self-attention,来考虑整个句子中哪些是与当前输入 a x a_x ax相关的讯息,通过计算输入之间的相关性α来得出。

计算关联程度α的模组

在这里插入图片描述

所有的α计算模组(query要计算自相关)

在这里插入图片描述
解释q,k,v的来源
q 1 = W q a 1 q_1 = W_qa_1 q1=Wqa1
k 1 = W k a 1 k_1 = W_ka_1 k1=Wka1
v 1 = W v a 1 v_1 = W_va_1 v1=Wva1
再往前,a的来源
最底层的输入(x1, x2, x3) 表示输入的序列数据,通过嵌入层(可选)将它们进行初步的embedding得到的a1,a2,a3

2.2.3、多头自注意力(Multi-headed Self-attention

概括:注意力机制组合使用查询、键和值。
在这里插入图片描述

对于特定的 x i x_i xi来说,与多组 W Q , W K , W V W_Q,W_K,W_V WQ,WK,WV与之相乘,得到多组的 q i , k i , v i q_i,k_i,v_i qi,ki,vi

2.3、transformer

基于transformer的EncoderDecoder模型结构图
在这里插入图片描述

嵌入层 任务

  • 为文本序列每个单词创建一个相应的向量表示;
  • 与位置编码相加送入下一层。

Feed-Forward Network层任务
考虑注意力机制可能对复杂过程的拟合程度不够, 通过增加两层网络来增强模型的能力。

掩码(mask)作用
解码端则负责生成目标语言序列,这一生成过程是自回归的,即对于每一个单词的生成过程,仅有当前单词之前的目标语言序列是可以被观测的,因此这一额外增加的掩码是用来掩盖后续的文本信息,以防模型在训练阶段直接看到后续的文本序列进而无法得到有效地训练。

token
词元。嵌入层输入词元序列(tokens),输出 vector。
原始输入词序列通过词元分析后,词被切分或保留作为token,这些token序列表示原始词序列。

输出层
softmax通常是在解码器的最后一层或输出层上应用一次,用于将整个目标序列的分布概率计算出来,而不是在每个时间步都应用softmax。这种方式有助于生成整个序列的概率分布,然后可以根据这个分布来选择最终的目标序列。
其它参考:https://zhuanlan.zhihu.com/p/396221959

计算过程
注意力计算。

 class Transformer(nn.Module):def __init__(self, src_vocab, trg_vocab, d_model, N, heads, dropout):super().__init__()self.encoder = Encoder(src_vocab, d_model, N, heads, dropout)self.decoder = Decoder(trg_vocab, d_model, N, heads, dropout)self.out = nn.Linear(d_model, trg_vocab)def forward(self, src, trg, src_mask, trg_mask):e_outputs = self.encoder(src, src_mask)d_output = self.decoder(trg, e_outputs, src_mask, trg_mask)output = self.out(d_output)return output

其中,d_output = self.decoder(trg, e_outputs, src_mask, trg_mask),d_output 是自回归得到的,需要src_maske_outputs 一起确保编码器输出的正确使用,src编码时也用到了src_mask,而 trg_masktrg 一起确保解码器生成目标序列的合适性。trg 包含了模型要生成的目标语言文本序列。解码器的主要目标是逐步生成 trg 中的每个词汇或标记,直到整个目标序列生成完毕。trg就是答案,一个一个对答案用到了trg_mask

2.4、BERT

预训练模型:在大规模数据事先训练,然后在特定任务上微调。

只有编码器的 transformer
base版本:#blocks = 12, hidden size = 768, #heads = 12, #parameters = 110M
Large版本:#blocks = 24, hidden size =1024, #heads = 16, #parameters = 340M
模型结构图
在这里插入图片描述
计算过程
BERT分词器:WordPiece,源词序列——>词元。

WordPiece词元分析算法(BERT

  • 先评分
  • 再合并,合并使得训练数据似然概率增加最高的词元对。
    HuggingFace 提供的评分公式:
    s c o r e = 词元对出现的频率 第一个词元出现的频率 × 第二个词元出现的频率 score = \frac{词元对出现的频率}{第一个词元出现的频率 × 第二个词元出现的频率} score=第一个词元出现的频率×第二个词元出现的频率词元对出现的频率

预训练任务1:语言模型每次随机(15%)将一些词元换成(mask:带掩码)。
预训练任务2:下一句子预测,预测一个句子对中两个句子是不是相邻。
句子对<cls> this movie is great <sep> I like it <sep>

  • <cls>标记通常用于表示序列(例如句子)的开始或整体表示
  • <sep>标记通常用于表示序列的边界或分隔不同的句子或段落
  • <eos> end of sequences,结束划分。

预训练bert
预训练阶段包括了编码器和解码器的部分,用于学习通用表示,而下游任务通常涉及到对编码器和解码器的微调,以适应具体任务。在某些情况下,下游任务可能只需要编码器或解码器的一部分,具体取决于任务的性质。
微调bert
微调流程图(instruct tuning)
在这里插入图片描述
第二种微调方式Performance会更好,但实际在做的能做的是第一种。拿到预训练好的模型为底座,按照上述流程图去进行特定任务的微调。

2.5、GPT

模型结构图
在这里插入图片描述
计算过程
h ( L ) = T r a n s f o r m e r − B l o c k ( L ) ( h ( 0 ) ) h (L) = Transformer-Block(L) (h(0)) h(L)=TransformerBlock(L)(h(0))
微调公式
L P T ( w ) = − ∑ i = 1 n l o g P ( w i ∣ w 0... w i − 1 ; θ ) L^{PT}(w) = -\sum_{i=1}^n logP(w_i|w0...w_{i-1};θ) LPT(w)=i=1nlogP(wiw0...wi1;θ)
L F T ( D ) = − ∑ ( x , y ) l o g P ( y ∣ x 1 . . x n ) L^{FT}(D) =-\sum_{(x,y)}log P(y|x_1..x_n) LFT(D)=(x,y)logP(yx1..xn)
L = L F T ( D ) + λ L P T ( D ) L = L^{FT}(D) + \lambda L^{PT}(D) L=LFT(D)+λLPT(D)

L:loss
PT:pre-training
FT:fine-tuning
w:文本序列w = w1w2…wn
D:下游任务标注数据集

2.6、LLaMA

模型结构图
在这里插入图片描述

  • 前置层归一化(Pre-normalization)
  • 整体 Transformer 架构与 GPT-2 类似
  • RMSNorm 归一化函数 (Normalizing Function)
  • R M S ( a ) = 1 n ∑ i = 1 n a i 2 RMS(a) = \sqrt{\frac{1}{n}\sum_{i=1}^n a_i^2} RMS(a)=n1i=1nai2
  • a i ˉ = a i R M S ( a ) \bar{a_i} = \frac{a_i}{RMS(a)} aiˉ=RMS(a)ai
  • 可进一步引入偏移系数 g i g_i gi,偏移参数 $ b i b_i bi
  • a i ˉ = a i R M S ( a ) g i + b i \bar{a_i} = \frac{a_i}{RMS(a)}g_i + b_i aiˉ=RMS(a)aigi+bi
  • Feed-Forword Network激活函数更换为 SwiGLU
  • 旋转位置嵌入(RoPE
  • 相对位置编码代替绝对位置编码
  • q ~ m = f ( q , m ) k ~ n = f ( k , n ) \tilde{q}_m = f(q,m) \tilde{k}_n = f(k,n) q~m=f(q,m)k~n=f(k,n)
  • f(m-n)表示绝对位置m、绝对位置n的相对位置,第m个token与第n个token的位置关系,和第n个token与第m个token的位置关系一定要有区分度,f(m-n) ≠ f (n-m)。矩阵不满足交换律

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145326.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为摄像头智能安防监控解决方案

云时代来袭&#xff0c;数字化正在从园区办公延伸到生产和运营的方方面面&#xff0c;智慧校园&#xff0c;柔性制造&#xff0c;掌上金融和电子政务等&#xff0c;面对各种各样的新兴业态的涌现&#xff0c;企业需要构建一张无所不联、随心体验、业务永续的全无线网络&#xf…

国内大语言模型的相对比较:ChatGLM2-6B、BAICHUAN2-7B、通义千问-6B、ChatGPT3.5

一、 前言 国产大模型有很多&#xff0c;比如文心一言、通义千问、星火、MOSS 和 ChatGLM 等等&#xff0c;但现在明确可以部署在本地并且开放 api 的只有 MOOS 和 ChatGLM。MOOS 由于需要的 GPU 显存过大&#xff08;不量化的情况下需要80GB&#xff0c;多轮对话还是会爆显存…

TSM动作识别模型【详解】

文章目录 本文使用的是somethingv2数据集&#xff0c;解压后是如下形式&#xff1b; 由于该压缩数据进行了分卷操作&#xff0c;需要合并后才能进行解压。首先我们将下面4个json文件剪贴到其他文件夹&#xff0c;只保留00-19的文件&#xff0c;然后在该文件夹下打开cmd&#xf…

【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Python 笔记06(Mysql数据库)

一 基础 1.1 安装 MySQL下载参考&#xff1a;MySQL8.0安装配置教程【超级详细图解】-CSDN博客 测试是否安装并正确配置环境变量&#xff1a; 1.2 查看服务器是否正常运行 1.3 显示数据库 show databases; 1.4 退出 exit 1.5 python 连接 1.6 查主机IP ipconfig

一篇文章教你自动化测试如何解析excel文件?

前言 自动化测试中我们存放数据无非是使用文件或者数据库&#xff0c;那么文件可以是csv&#xff0c;xlsx&#xff0c;xml&#xff0c;甚至是txt文件&#xff0c;通常excel文件往往是我们的首选&#xff0c;无论是编写测试用例还是存放测试数据&#xff0c;excel都是很方便的。…

SpringBoot使用Docker并上传至DockerHub

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版&#xff0c;欢迎购买。点击进入详情 文章目录 1.系列文章2.构建docker镜像的方式3.docker操作3.1 安装docker3.2 查看docker镜像3.3 本地运行docker3.4 修改tag3.5 推送docker镜像3.6 远端server拉取d…

Linux 集锦 之 最常用的几个命令

Linux最常用的几个命令 ​ Linux系统中的命令那是相当地丰富&#xff0c;不同的版本可能还有不同的命令&#xff0c;不过Linux核心自带的命令大概有几百个&#xff0c;这个不管是什么发行版一般都是共用的。 ​ 如果希望探索Linux的所有命令&#xff0c;可能不太实际&#xf…

树莓派基本配置(2)

安装motion $sudo apt-get update $sudo apt-get install motion配置motion sudo nano /etc/default/motionsudo nano /etc/motion/motion.conf主要改这些参数 //让Motion作为守护进程运行 daemon on ... //用这个端口号来读取数据 stream_port 8081 ... //网络上其它主机…

力扣刷题-哈希表-求两个数组的交集

349 求两个数组的交集 题意&#xff1a;给定两个数组&#xff0c;编写一个函数来计算它们的交集。注意&#xff1a;输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 提示&#xff1a; 1 < nums1.length, nums2.length < 1000 0 < nums1[i], …

nodejs在pdf中绘制表格

需求 之前我已经了解过如何在pdf模板中填写字段了 nodejs根据pdf模板填入中文数据并生成新的pdf文件https://blog.csdn.net/ArmadaDK/article/details/132456324 但是当我具体使用的时候&#xff0c;我发现我的模板里面有表格&#xff0c;表格的长度是不固定的&#xff0c;所…

WPF 03

staticResource和dynamicResource的区别 首先看一个案例 MainWindow.xaml <Window x:Class"WpfDay03.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml&quo…

Springboot中slf4j日志的简单应用

1、注入依赖&#xff08;pom.xml&#xff09; <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-api --> <dependency><groupId>org.slf4j</groupId><artifactId>slf4j-api</artifactId><version>2.0.9</version> &…

从MVC到DDD,该如何下手重构?

作者&#xff1a;付政委 博客&#xff1a;bugstack.cn 沉淀、分享、成长&#xff0c;让自己和他人都能有所收获&#xff01;&#x1f604; 大家好&#xff0c;我是技术UP主小傅哥。多年的 DDD 应用&#xff0c;使我开了技术的眼界&#xff01; MVC 旧工程腐化严重&#xff0c;…

排序算法之【希尔排序】

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

C++ -- 学习系列 std::deque 的原理与使用

一 deque 是什么? std::deque 是 c 一种序列式容器&#xff0c;其与 vector 类似&#xff0c;其底层内存都是连续的&#xff0c;不同的地方在于&#xff0c; vector 是一端开口&#xff0c;在一端放入数据与扩充空间&#xff0c;而 deque 是双端均开口&#xff0c;都可以放…

3D孪生场景搭建:模型区域摆放

前面介绍完了NSDT场景编辑器的线性绘制和阵列绘制&#xff0c;本章将讲述下编辑器的另一种绘制方式&#xff1a;区域绘制。 1、区域绘制功能简介 在场景中绘制资产时&#xff0c;除使用上述两个的方式外&#xff0c;NSDT 编辑器还支持使用区域绘制的方式进行绘制。先选取需要…

GEO生信数据挖掘(一)数据集下载和初步观察

检索到目标数据集后&#xff0c;开始数据挖掘&#xff0c;本文以阿尔兹海默症数据集GSE1297为例 目录 GEOquery 简介 安装并加载GEOquery包 getGEO函数获取数据&#xff08;联网下载&#xff09; 更换下载数据源 对数据集进行初步观察处理 GEOquery 简介 GEOquery是一个…

聊聊并发编程——并发容器和阻塞队列

目录 一.ConcurrentHashMap 1.为什么要使用ConcurrentHashMap&#xff1f; 2.ConcurrentHashMap的类图 3.ConcurrentHashMap的结构图 二.阻塞队列 Java中的7个阻塞队列 ArrayBlockingQueue&#xff1a;一个由数组结构组成的有界阻塞队列。 LinkedBlockingQueue&#xf…

用go实现http服务端和请求端

一、概述 本文旨在学习记录下如何用go实现建立一个http服务器&#xff0c;同时构造一个专用格式的http客户端。 二、代码实现 2.1 构造http服务端 1、http服务处理流程 基于HTTP构建的服务标准模型包括两个端&#xff0c;客户端(Client)和服务端(Server)。HTTP 请求从客户端…