分布式并行训练(DP、DDP、DeepSpeed)

[pytorch distributed] 01 nn.DataParallel 数据并行初步

  • 数据并行 vs. 模型并行
    • 数据并行:模型拷贝(per device),数据 split/chunk(对batch切分)

      • 每个device上都拷贝一份完整模型,每个device分别处理1个batch的一部分(如batch_size=64, 2个device, 每device处理32个样本)
      • 梯度反向传播时,每个设备上的梯度求和(求和才是一个完整batch所有样本的loss),汇入中心设备/参数服务器(默认gpu0)对模型进行梯度优化。
    • 模型并行:数据拷贝(per device),模型 split/chunk(显然是单卡放不下模型的情况下)

  • DP => DDP
    • DPnn.DataParallel (不推荐)
      • https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
    • DDP: DistributedDataParallel (推荐)
    • Use nn.parallel.DistributedDataParallel instead of multiprocessing or nn.DataParallel and Distributed Data Parallel.

1. 数据并行DP(nn.DataParallel)

预先定义一下Dataset和Model

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoaderclass RandomDataset(Dataset):def __init__(self, size, length):self.len = length# 100*5self.data = torch.randn(length, size)def __getitem__(self, index):# (5, )return self.data[index]def __len__(self):# 100return self.lenclass Model(nn.Module):# Our modeldef __init__(self, input_size, output_size):# 5 => 2super(Model, self).__init__()self.fc = nn.Linear(input_size, output_size)def forward(self, input):output = self.fc(input)print("\tIn Model: input size", input.size(),"output size", output.size())return outputinput_size = 5  # 模型输入数据维度(b,n) = (30, 5)
output_size = 2  # 模型输出数据维度(b,n) = (30, 2)batch_size = 30  # batch size
data_size = 100  # 数据集样本数量rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),batch_size=batch_size, shuffle=True)
# 构造优化器和损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.MSELoss()# 模拟目标值
target = torch.randn(64, 5) 

step1: 并行化包裹模型

# Parameters and DataLoaders                    
# (5, 2)
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:  # 如果不止1张GPU # 构建数据并行模型device_ids = [0, 1]  # 使用的设备ID列表# 如3张GPU,dim = 0,[30, xxx] -> [15, ...], [15, ...] on 2 GPUsmodel = nn.DataParallel(model, device_ids)  # 并行化,默认使用所有device加载数据
  • torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)
    • model= 指传入的模型
    • device_ids=None,
      • 参与训练的 GPU 有哪些,device_ids=gpus,默认None是使用全部device;
    • output_device=None
      • 指定中心设备(参数服务器),用于汇总梯度的 GPU 是哪个,output_device=gpus[0]
    • dim=0
      • 从那一维度进行数据切分,默认batch维度
  • 在执行 forward/backward 之前,使用 DataParallel 将 model 复制到 device_ids 指定设备上,进行数据并行处理
    • model.to('cuda:0')
    • 不同的是tensor的to(device)是在device上生成一个拷贝,不改变原来cpu上的tensor;而model是直接将原model转移到gpu上。

step2:加载到device0

设置中心设备(参数服务器),用于反向传播时的梯度汇总,一般指定cuda:0

# 将模型从cpu放在gpu 0上 
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
model.to(device)

step3:forward前向传播

模型forward时,将data_loader加载的一个batch的数据进行切分,送入不同device的模型进行计算,再将结果合并输出。

for data in rand_loader:# input_var can be on any device, including CPUinput = data.to(device)
#     input = dataoutput = model(input)print("Outside: input size", input.size(),"output_size", output.size())
"""In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
"""

step4:反向传播梯度聚合

loss.backward()分别在每个device上计算loss的梯度,average_gradients(model)将梯度聚合到中心设备/参数服务器(cuda:0)上,进行梯度优化

	# 在每个设备上进行前向传播和梯度计算loss = criterion(output, target)loss.backward()# 对各个设备上的梯度进行求和average_gradients(model)# 使用原始设备模型进行梯度优化optimizer.step()

2. 分布式数据并行DDP(nn.parallel.DistributedDataParallel)

multiple GPUs in a single machine/server/node:单机多卡

  • 分布式数据并行时,模型(model parameters)/优化器(optimizer states)每张卡都会拷贝一份(replicas)
    • DDP 始终在卡间维持着模型参数和优化器状态的同步一致性在整个训练过程中;
  • Data Parallel,一个batch的数据通过 DistributedSampler 切分split 分发到不同的 gpus 上
    • 此时虽然模型/optimizer 相同,但因为每个device的数据输入不同,导致 loss 不同,反向传播时计算到的梯度也会不同
    • 此时 ddp 通过 ring all-reduce algorithm ,保证每个batch step结束后不同卡间model/optimizer 的同步一致性

在这里插入图片描述

  • 如上图所示,Ring all-reduce algorithm
    • 首先会将所有的 gpu cards 连成一个 ring环
    • 其同步过程,不需要等待所有的卡都计算完一轮梯度,
    • 经过这个同步过程之后,所有的卡的 models/optimizers 就都会保持一致的状态;

在这里插入图片描述

  • Ring all-reduce algorithm 计算和同步的几个过程
    • 红线:GPUs 分别计算损失(forward)和梯度(backward)
    • 蓝线:梯度的聚合到中心device/参数服务器上(gpu0)
    • 绿线:(模型/优化器)参数的更新及广播(broadcast);

其实参数服务器可以是一个GPU0,也可以是CPU,也可以是所有GPU:
在这里插入图片描述
但将数据发送到GPU0会成为device通信的瓶颈:
在这里插入图片描述

所以采用环形的梯度聚合方式更加高效:
在这里插入图片描述

DDP基本概念

  • world

    • world 表示包含所有进程的组(所有gpu的集合)。
    • 每个进程通常对应一个 GPU, world 中的进程可以相互通信,这使得使用分布式数据并行(Distributed Data Parallel, DDP)进行训练成为可能。
  • world_size(gpu个数/进程个数):

    • world_size 表示分布式训练环境中的总进程数/gpu数。
    • 每个进程都会被分配一个唯一的标识符(rank),从 0 到 world_size-1。
  • rank(进程标识符):

    • rank 是分配给world每个进程的唯一标识符,用于标识每个进程在分布式训练中的角色。
    • local rank是分配个单个node每个进程的标识符,world中可能有多个node。
  • node(节点):

    • node 可以理解为一个服务器,代表着物理设备上的一个实体。
    • 在多机分布式训练中,每台机器被视为一个节点,节点之间需要进行通信。
    • 例如,如果有2 个node/server,每个 node/server/machine 各有4张卡(4 gpus)。total_world_size = 2(节点数) * 4(每个节点的 GPU 数量)= 8, rank 的取值范围为 [0, 1, 2, 3, 4, 5, 6, 7], local_rank 的取值范围为 [0, 1, 2, 3],[0, 1, 2, 3] 分别对应着不同的节点上的进程。
  • All to one:聚合过程(reduce),所有GPU(model和optiminizer状态)汇聚到参数服务器;

  • one to All:广播过程(broadcast),参数服务器广播到所有GPU;

torchrun

torchrun运行分布式train.py脚本,nproc-per-node设置每个node服务器上的gpu个数(一般是1个服务器)ddp_gpus_torchrun.py脚本名称,--max_epochs 5 --batch_size 32脚本参数。

!torchrun --nproc-per-node=2 ddp_gpus_torchrun.py --max_epochs 5 --batch_size 32

实现batch_size不变的情况下,对step的切分
(如单卡情况下,data_len=1024,batch_size=32,则一个gpu的step=1024/32=32
(多卡情况下2个gpu,data_len=1024,batch_size=32,则每个gpu的step=(1024/32)/2=32/2=16

step1:导入相关的包
import os
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoaderimport torch.multiprocessing as mp
from torch.utils.data.distributed import DistributedSampler  # 分发数据
from torch.nn.parallel import DistributedDataParallel as DDP  # 包装model使之数据并行
from torch.distributed import init_process_group, destroy_process_group
step2:ddp_setup函数

这个函数用于设置分布式训练的环境。它调用了init_process_group函数来初始化进程组,使用的通信backend后端是nccl(NVIDIA Collective Communication Library),然后使用torch.cuda.set_device函数,根据环境变量设置当前进程使用的GPU设备。

def ddp_setup():"""Args:rank: Unique identifier of each processworld_size: Total number of processes"""# rank 0 process
#     os.environ["MASTER_ADDR"] = "localhost"
#     os.environ["MASTER_PORT"] = "12355"# nccl:NVIDIA Collective Communication Library # 分布式情况下的,gpus 间通信init_process_group(backend="nccl")torch.cuda.set_device(int(os.environ['LOCAL_RANK']))
step3:Trainer类

这个类定义了一个模型训练的封装器。在初始化方法中,它接收一个模型backend、一个训练数据加载器train_dataloader、一个优化器train_dataloader作为参数,并将模型移动到GPU上,然后使用DistributedDataParallel对模型进行包装,以实现数据并行。(model先放cuda再DDP封装)

_run_batch方法实现了一次批量的训练过程,包括前向传播、计算损失、反向传播和更新参数。_run_epoch方法用于遍历整个训练集进行训练,self.train_dataloader.sampler.set_epoch(epoch)是用于设置数据加载器的epoch,以保证每个GPU在每个epoch开始时加载的数据都是不同的。train方法则用于控制训练的总体流程。

class Trainer:def __init__(self, model: torch.nn.Module, train_dataloader: DataLoader, optimizer: torch.optim.Optimizer, ) -> None:self.gpu_id = int(os.environ['LOCAL_RANK'])self.model = model.to(self.gpu_id)self.train_dataloader = train_dataloaderself.optimizer = optimizerself.model = DDP(model, device_ids=[self.gpu_id])def _run_batch(self, xs, ys):self.optimizer.zero_grad()output = self.model(xs)loss = F.cross_entropy(output, ys)loss.backward()self.optimizer.step()def _run_epoch(self, epoch):batch_size = len(next(iter(self.train_dataloader))[0])print(f'[GPU: {self.gpu_id}] Epoch: {epoch} | Batchsize: {batch_size} | Steps: {len(self.train_dataloader)}')self.train_dataloader.sampler.set_epoch(epoch)for xs, ys in self.train_dataloader:xs = xs.to(self.gpu_id)ys = ys.to(self.gpu_id)self._run_batch(xs, ys)def train(self, max_epoch: int):for epoch in range(max_epoch):self._run_epoch(epoch)
step4:MyTrainDataset类

这个类定义了一个自定义的训练数据集。在初始化方法中,它接收一个大小参数,并生成一组随机的数据样本。__len__方法返回数据集的大小,__getitem__方法用于获取指定索引处的数据样本。

class MyTrainDataset(Dataset):def __init__(self, size):self.size = sizeself.data = [(torch.rand(20), torch.rand(1)) for _ in range(size)]def __len__(self):return self.sizedef __getitem__(self, index):return self.data[index]
step5:main函数

这个函数是程序的主函数。在函数内部,首先调用了ddp_setup函数来设置分布式训练的环境。

然后创建了一个自定义的训练数据集和相应的数据加载器,以及一个线性模型和一个优化器。DistributedSampler是PyTorch提供的一个分布式采样器,用于确保每个进程加载的数据都是不同的且顺序随机。sampler对象被传入训练数据集的构造函数,可以通过数据加载器(如torch.utils.data.DataLoader)的sampler参数指定。在每个进程中,DistributedSampler会根据进程ID和进程数量,将整个训练数据集划分成多个部分,并为每个进程提供其应加载的数据索引。这样,在分布式训练过程中,每个进程只会加载自己负责的数据部分,避免了数据重复加载。

接下来,创建了一个Trainer对象,并调用其train方法进行模型训练。最后调用destroy_process_group函数销毁进程组。

def main(max_epochs: int, batch_size: int):ddp_setup()train_dataset = MyTrainDataset(2048)train_dataloader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, shuffle=False, # batch input: split to each gpus (且没有任何 overlaping samples 各个 gpu 之间)sampler=DistributedSampler(train_dataset))model = torch.nn.Linear(20, 1)optimzer = torch.optim.SGD(model.parameters(), lr=1e-3)trainer = Trainer(model=model, optimizer=optimzer, train_dataloader=train_dataloader)trainer.train(max_epochs)destroy_process_group()
step6:解析命令行参数并运行主函数

在这个步骤中,首先使用argparse模块解析命令行参数,包括最大训练周期数max_epochs和批量大小batch_size。然后调用main函数,并将解析后的参数传递给它进行模型训练。

if __name__ == '__main__':import argparseparser = argparse.ArgumentParser(description='simple distributed training job')parser.add_argument('--max_epochs', type=int, help='Total epochs to train the model')parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)')args = parser.parse_args()#    world_size = torch.cuda.device_count()main(args.max_epochs, args.batch_size)

3. 模型并行

  • 数据并行是切数据(scattering inputs and gathering outputs),模型并行是切模型(shards);
    • 模型并行单卡放不下一份模型;
    • 将一份大模型,不同的层切分到不同的卡上,forward时串行执行;

Huggingface实现

  • device_mapHuggingface支持自动实现模型并行
    • device_map参数的取值["auto", "balanced", "balanced_low_0", "sequential"]
    • auto的模型分割优先级:GPU(s) > CPU (RAM) > Disk

如下,如果有两种gpu,device_map="auto"使模型的layers的parameter分别加载到两张gpu上(各一半):

from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf",load_in_8bit=True,device_map="auto",
)
for i, para in enumerate(model.named_parameters()):
#     print(f'{i}, {para[0]}\t {para[1].device} \t{para[1].dtype}')print(f'{i}, \t {para[1].device} \t{para[1].dtype}')`

to(device)实现

pytorch模拟模型并行原理:分别用to(device),将不同的层加载到不同的gpu上,forward时将parameter也加载到对应gpu。

import torch
import torch.nn as nn
import torch.optim as optimclass ToyModel(nn.Module):def __init__(self):super(ToyModel, self).__init__()self.net1 = torch.nn.Linear(10000, 10).to('cuda:0')self.relu = torch.nn.ReLU()self.net2 = torch.nn.Linear(10, 5).to('cuda:1')def forward(self, x):# 卡间串行执行x = self.net1(x.to('cuda:0')))x = self.net2(self.relu(x.to('cuda:1'))return x

进行一个batch的train:每个batch_size=20样本,5分类

model = ToyModel()
loss_fn = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)optimizer.zero_grad()
outputs = model(torch.randn(20, 10000))
labels = torch.randn(20, 5).to('cuda:1')
loss_fn(outputs, labels).backward()
optimizer.step()

4. Deepspeed

DeepSpeed:炼丹小白居家旅行必备【神器】
在这里插入图片描述

技术栈
在这里插入图片描述

术语:其实和前面DDP的概念一样。

在这里插入图片描述

Train的数据4部分组成:model模型参数backward的梯度gradientoptimizer优化器参数forward的数据tensor
在这里插入图片描述

Deepspeed、ZeRO技术方案分发Partitioning(按gpu数量N等分数据)、卸载Offload(不用的数据放入CPU)、模型并行Pipeline(模型参数按层切分到不同gpu上)
在这里插入图片描述

step1:deepspeed初始化

# init distributed
deepspeed.init_distributed()

加载参数local_rank

def parse_arguments():import argparseparser = argparse.ArgumentParser(description='deepspeed training script.')parser.add_argument('--local_rank', type=int, default=-1,help='local rank passed from distributed launcher')# Include DeepSpeed configuration argumentsparser = deepspeed.add_config_arguments(parser)args = parser.parse_args()return args

step2:deepspeed封装模型和数据集

deepspeed.initialize()封装model和dataset,相当于将模型和数据集交给deepspeed进行托管,engine就是deepspeed封装后的model,其他返回值同样都是deepspeed封装过的。(其中optimizer和lr_scheduler 后面是用不到的),我们只需要模型engine数据加载器training_dataloader

还要传入一个deepspeed的配置文件deepspeed_config

# init model
model = MyClassifier(3, 100, ch_multi=128)
# init dataset
ds = MyDataset((3, 512, 512), 100, sample_count=int(1e6))# init engine
engine, optimizer, training_dataloader, lr_scheduler = deepspeed.initialize(args=args,model=model,model_parameters=model.parameters(),training_data=ds,config=deepspeed_config,
)
# load checkpoint
engine.load_checkpoint("./data/checkpoints/MyClassifier/")

step3:训练

在使用DeepSpeed进行分布式训练时,通常不需要手动调用optimizer.zero_grad()来清零梯度。DeepSpeed会自动处理梯度累积和梯度清零的操作,无需手动调用zero_grad()。

当使用DeepSpeed进行分布式训练时,一般会在engine.backward(loss)之后调用engine.step()来执行梯度更新操作。在engine.step()中,DeepSpeed会执行优化器的step()方法来更新模型参数,并在必要的时候自动清零梯度,以便进行下一轮的反向传播。

engine.train()for step, (data, label) in enumerate(training_dataloader):step += 1data= data.to(device=engine.device, dtype=torch.float16)  # xlabel = label.to(device=engine.device, dtype=torch.long).reshape(-1)  # y# 不需要梯度清零optimizer.zero_grad()outputs = engine(data)  # forwardloss = F.cross_entropy(outputs, label )engine.backward(loss)engine.step()

单机节点node多卡gpu运行

deepspeed \--launcher_args "source ${PWD}/setup_env.sh" \--hostfile hostfile \deepspeed_script.py \--deepspeed \--deepspeed_config "$PWD/deepspeed_config.json"

deepspeed_config.json

{"train_micro_batch_size_per_gpu": 1,"gradient_accumulation_steps": 1,"optimizer": {"type": "Adam","params": {"lr": 0.001,"betas": [0.8,0.999],"eps": 1e-08,"weight_decay": 3e-07}},"scheduler": {"type": "WarmupLR","params": {"warmup_min_lr": 0,"warmup_max_lr": 0.001,"warmup_num_steps": 1000}},"activation_checkpointing": {"partition_activations": true,"cpu_checkpointing": true,"contiguous_memory_optimization": false,"number_checkpoints": null,"synchronize_checkpoint_boundary": false,"profile": true},"fp16": {"enabled": true,"auto_cast": false,"loss_scale": 0,"initial_scale_power": 16,"loss_scale_window": 1000,"hysteresis": 2,"consecutive_hysteresis": false,"min_loss_scale": 1},"zero_optimization": {"stage": 3,"offload_param": {"device": "cpu","pin_memory": true},"offload_optimizer": {"device": "cpu","pin_memory": true},"contiguous_gradients": true,"overlap_comm": true}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/146459.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

密码技术 (5) - 数字签名

一. 前言 前面在介绍消息认证码时,我们知道消息认证码虽然可以确认消息的完整性,但是无法防止否认问题。而数字签名可以解决否认的问题,接下来介绍数字签名的原理。 二. 数字签名的原理 数字签名和公钥密码一样,也有公钥和私钥&am…

字符串函数(一)

✨博客主页:小钱编程成长记 🎈博客专栏:进阶C语言 字符串函数(一) 0.前言1.求字符串长度的函数1.1 strlen(字符串长度) 2.长度不受限制的字符串函数2.1 strcpy(字符串拷贝&#xff0…

直播协议 python 常见直播协议

1. 推流、直播 和 点播分别是什么意思? 推流 主播将本地视频源和音频源推送到云服务器,也被称为“RTMP发布”。 直播 即直接观看主播实时推送过来的音视频数据。 点播 视频源已经事先存储于云服务器之上的音视频文件,观众随时可以观看。 目…

怒刷LeetCode的第22天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一:回溯算法 方法二:基于位运算的回溯 第二题 题目来源 题目内容 解决方法 方法一:动态规划 方法二:分治法 方法三:前缀和数组 第三题 题目来源 题目内容…

Acwing 842. 排列数字

Acwing 842. 排列数字 知识点题目描述思路讲解代码展示 知识点 DFS 题目描述 思路讲解 DFS重点是:顺序!(暴力的手法)(递归) 用 path 数组保存排列,当排列的长度为 n 时,是一种方…

【Leetcode】 17. 电话号码的字母组合

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 示例 1: 输入:digits "23" 输出&…

Java笔记五(数组)

目录 数组 数组声明创建 数组初始化的三种初始化类型: 静态初始化 动态初始化 数组的默认初始化 数组的四个基本特点 数组边界 数组的使用 示例一:计算所有的元素和以及查找最大元素 示例二:For-Each循环 示例三:数组作…

Ubuntu 安装 Docker 的详细步骤

文章目录 简介1.更新2.安装必要的软件包2.1 基于阿里源 3.验证 Docker 安装是否成功4.安装后的一些常规设置及常用的命令4.1 启动 Docker4.2 Docker 在系统启动时自动运行4.3 运行一个 Hello World 镜像4.4 查看docker运行状态 欢迎来到这篇关于在 Ubuntu 上安装 Docker 的教程…

鞋类 整鞋试验方法 剥离强度

声明 本文是学习GB-T 3903.3-2011 鞋类 整鞋试验方法 剥离强度. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 GB/T 3903 的本部分规定了整鞋鞋底与鞋帮或外底与外中底之间剥离强度的试验方法。 本部分适用于采用模压、硫化、注塑、灌注、胶…

【c++随笔07】常量、变量、static

【c随笔07】常量、变量、static 1、常量、变量1.1、声明变量1.2、使用常量 2、static介绍2.1、static 局部变量2.2、static 全局变量2.3、C static静态成员变量2.4、C static静态成员函数详解 原创地址,https://zhengjunxue.blog.csdn.net/article/details/13167770…

【数据结构】——顺序表详解

大家好!当我们学习了动态内存管理后,就可以写一个管理数据的顺序表了!!! 顺序表的理解: 线性表是最基本、最简单、也是最常用的一种数据结构。线性表(linear list)是数据结构的一种…

02-Zookeeper实战

上一篇:01-Zookeeper特性与节点数据类型详解 1. zookeeper安装 Step1: 配置JAVA环境,检验环境: java -versionStep2: 下载解压 zookeeper wget https://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.5.8/apache-zookeepe…

响应式设计的实现方式

一. 什么是响应式 响应式网站设计是一种网络页面设计布局。页面的设计与开发应当根据用户行为以及设备环境(系统平台,屏幕尺寸,屏幕定向等)进行相应的响应和调整。 响应式网站常见特点: 1. 同时适配PC平板手机。 2…

Win10自带输入法怎么删除-Win10卸载微软输入法的方法

Win10自带输入法怎么删除?Win10系统自带输入法就是微软输入法,这个输入法满足了很多用户的输入需求。但是,有些用户想要使用其它的输入法,这时候就想删除掉微软输入法。下面小编给大家介绍最简单方便的卸载方法吧。 Win10卸载微软…

Hive【Hive(三)查询语句】

前言 今天是中秋节,早上七点就醒了,干啥呢,大一开学后空教室紧缺,还不趁着假期来学校等啥呢。顺便偷偷许个愿吧,希望在明年的这个时候,秋招不知道赶不赶得上,我希望拿几个国奖,蓝桥杯…

淘宝天猫复制商品链接粘贴到草柴查优惠券iPhone苹果手机粘贴弹窗怎么关闭?

经常在淘宝、天猫、京东网购,挑选商品后复制链接,到草柴APP查询要购买商品的优惠券和返利,iPhone苹果手机每次粘贴复制的商品链接都弹窗提示特别烦人。接下来分享如何关闭草柴APP复制粘贴提醒的弹窗; 如何永久关闭iPhone苹果手机复…

去雨去雪去雾算法之本地与服务器的TensorBoard使用教程

在进行去雨去雾去雪算法实验时,需要注意几个参数设置,num_workers只能设置为0,否则会报各种稀奇古怪的错误。 本地使用TensorBoard 此外,发现生成的文件是events.out.tfevents格式的,查询了一番得知该文件是通过Tens…

28294-2012 钢渣复合料 课堂随笔

声明 本文是学习GB-T 28294-2012 钢渣复合料. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了混凝土用钢渣复合料的术语和定义、原材料组成及要求、强度等级、技术要求、试验方 法、检验规则、包装、标识、运输与贮存。 本标准…

解决内网拉取企微会话存档代理问题的一种办法

问题:客户的服务都是内网的,不能直接访问外网;访问外网的话需要走kong网关才能出去。 会话存档官网说可以使用socket5、http方式拉取会话存档;我这边尝试了直接使用kong网关的ip和端口配置进去,是访问不了的 我后面就…

飞桨EasyDL-Mac本地部署离线SDK-Linux集成Python

前言:本文对使用飞桨EasyDL桌面版实现本地部署物体检测做一下说明 一、训练模型 如何使用飞桨EasyDL桌面版这里就不再赘述,直接参照官方文档进行物体检测模型训练。 飞桨EasyDL桌面版-用零代码开发实现物体检测https://ai.baidu.com/ai-doc/EASYDL/Tl2…