正点原子嵌入式linux驱动开发——TF-A初探

上一篇笔记中,正点原子的文档简单讲解了一下什么是TF-A,并且也学习了如何编译TF-A。但是TF-A是如何运行的,它的一个运行流程并未涉及。TF-A的详细运行过程是很复杂的,涉及到很多ARM处理器底层知识,所以这一篇笔记的内容就是讲解一下TF-A的整个框架以及运行的大致流程

设备如何保证安全

设备的安全保护涉及到很多方面,这里的笔记主要就是讲解TF-A。TF-A主要保护的就是设备启动过程,通过各种鉴权,保证设备启动的过程中每个阶段的固件都是安全的

对于传统的ARM处理而言, Linux系统的启动流程就是:内部BootROM->Uboot->kernel->rootfs,整个启动过程是一个链式结构启动过程其实是没有安全校验的(有些公司会自行定义一些校验方法)。加入TF-A固件以后, TF-A就可以对uboot、kernel进行校验,如果还要使用TEE OS(Trusted Execution Environment,TEE),那么TF-A还要完成对TEE OS的校验。

之前的笔记已经有所涉及STM32MP1的安全启动 (Secure Boot,有些资料也叫做安全引导),安全启动目的是为了保证整个启动过程各个镜像的完整性,防止被不法分子破坏或替换掉。Linux启动是一个链式结构,因此安全启动的鉴权 (校验)过程也是链式结构的。在系统启动的过程中,会先对下一个要加载运行的镜像进行鉴权,只有鉴权成功此镜像才能运行,并进入到下一阶段,同样要先对下一阶段的镜像进行鉴权,只要其中有一环鉴权失败,那么整个系统就会启动失败。(也就是说,鉴权成功了才会进入下一个鉴权,不然直接启动失败)。

STM32MP1使用ECDSA(Elliptic Curve Digital Signature,椭圆曲线数字签名算法)验证算法来完成鉴权,ECDSA相比 RSA效果好,而且秘钥更小,STM32MP1使用256位的ECDSA秘钥。一共有两个算法用于计算 ECDSA:

  • P-256 NIST
  • Brainpool 256

可以在STM32MP1头部信息中定义使用哪个算法,STM32MP1整个加密过程比较复杂,正点原子的教程中不做讲解。STM32MP1启动的时候,内部Boot代码会对FSBL进行鉴权,然后FSBL会对后续的内容进行鉴权,这个FSBL就是TF-A。

TF-A概述

TF-A简介

TF-A是ARM可信任固件,是ARM官方提供的一个固件代码,它提供了统一的接口标准,方便不同的半导体厂商将自家的芯片添加到TF-A里面。ST就是在TF-A官
方源码里面添加了STM32MP1系列芯片,之前已经有过笔记教程完成了针对正点原子的STM32MP157开发板完成TF-A的源码补丁,这个补丁文件就是STM32MP1芯片对应的源码补丁文件。

TF-A官网地址为:TF-A官网,此网站不仅仅提供了TF-A,还有针对Cortex-M单片机的TF-M,以及OP-TEE等安全相关软件库。关于TF-A的文档在开发板的资料盘里也是有的,就是Trusted Firmware-A(TF-A用户手册).pdf,如果我之后对这部分感兴趣就去看看,目前只是想学习linux驱动开发,这一部分不是重点。

TF-A一共分为5部分:bl1、bl2、bl2u、bl31、bl32和bl33,打开TF-A源码目录,可以看到这5部分,如下图所示:
TF-A源码
但是在图中可以发现,我们并没有看到bl33这个文件夹,这是因为bl33是TF-A启动的其他镜像固件,比如uboot。上图中bl1、bl2和bl31都属于TF-A固件,而bl32和bl33是TF-A要启动的其他第三方固件,比如TEE OS和uboot。

bl1、bl2、bl31、bl32和bl33是TF-A的不同启动阶段,TF-A的启动过程是链式的,不同的阶段完整的功能不同,bl1、bl2、bl31、bl32和bl33全名如下:

  • bl1:Boot loader stage 1(BL1);
  • bl2:Boot loader stage 2(BL2);
  • bl31:Boot loader stage 3-1 (BL31);
  • bl32:Boot loader stage 3-2 (BL32);
  • bl33:Boot loader stage 3-3 (BL33)。

ARMv7和ARMv8权限等级

TF-A一开始是为ARMv8准备的,ARMv8最突出的特点就是支持64位指令,但是为了兼容原来的ARMv7,ARMv8提供了两种指令集:AAarch64和AArch32,根据字面意思就是64位和32位,其中AArch32和ARMv7基本一样 (会多一些其他操作指令)。 STM32MP1内核为32位的 Cortex-A,所以对应TF-A中的 AArch32。正是因为TF-A一开始是针对 ARMv8准备的,所以TF-A的资料比较难已学习,牵涉到很多底层知识,需要对ARM CPU有所了解。安全不能仅仅依靠软件来实现,也是需要硬件支持的,比如ARM处理器就有不同的运行等级,运行在低等级 (非安全模式)的应用就不能访问高等级 (安全模式)的资源,以此来保证敏感资源的安全性

ARMv7-A工作模式

以前的ARMv7处理器有7种运行模型:User、FIQ、IRQ、Supervisor(SVC)、Abort、Undef和System。但新的ARMv7-A架构加入了TrustZone安全扩展,所以就新加了一种运行模式:Monitor,新的处理器架构还支持虚拟化扩展,因此又加入了另一个运行模式Hyp,所以Cortex-A7处理器有9种处理模式,如下图所示:
ARMv7-A的9种运行模式
不同的处理器模式下,CPU对于硬件的访问权限不同,叫做Privilege Level(特权等级),一共有两个特权级别:Privilege(特权级)和non-privilege(非特权级)。其中只有User模式处于non-privilege,也就是非特权级,剩下的8个模式都是privilege(特权级)。系统启动以后应用软件都是运行在User模式,也就是非特权级,这个时候处理器对于敏感资源的访问是受限的,如果要访问这些敏感资源就需要切换到对应的工作模式下

ARMv7-A对Privilege Level进行了命名:PL0和PL1,后来也出现了PL2,用于虚拟扩展ARMv7-A新增的Monitor模式就是针对安全扩展的,为了支持TEE而引入的

ARMv8工作模式

ARMv8没有Privilege level的概念,取而代之的是**Exception level(异常级别),简称为EL,用于描述特权级别,一共有4个级别:EL0、EL1、EL2和EL3,数字越大,级别越高,权限越大!**这四个EL级别对应的应用场合如下:

  • EL0:一般的应用程序;
  • EL1:操作系统,比如Linux;
  • EL2:虚拟化 (Hypervisor),虚拟机管理器;
  • EL3:最底层的安全固件(安全监视器),比如ARM Trusted Firmware(ARM安全固件, ATF也就是TF-A)。

ARMv8提供了两种安全状态:Secure和Non-secure,也就是安全和非安全,Non-secure也就是正常世界(Normal World)。我们可以在Non-secure运行通用操作系统,比如Linux,在Secure运行可信操作系统,比如OP-TEE,这两个操作系统可以同时运行,这个需要处理器支持 ARM的TrustZone功能。在Normal world和Secure world下, ARMv8的4个EL等级对应的内容如下图所示:
ARMv8在Normal和Secure下EL等级对应的含义
在ARMv8的AArch32模式下,处理器模式如下图所示:
AArch32下处理器模式
从上图可以看出,在AArch32模式下,EL0-LE3对应 ARMv7的不同工作模式:

  • EL0:对应 ARMv7的User工作模式;
  • EL1:对应ARMv7的SVC、ABT、IRQ、UND和SYS这 6种工作模式;
  • EL2:对应ARMv7的Hyp工作模式;
  • EL3:对应ARMv7的Mon工作模式。

可以看出,只有EL3是用于安全监视器的,所以TF-A主要工作在EL3下,TF-A的源码就有大量的“EL3”字样的文件或代码。

TF-A不同启动阶段

TF-A分为不同的启动阶段,按照链式结构依次启动, ATF代码启动流程如下图所示:
TF-A启动流程
从上图中可以看到,当芯片复位以后首先运行bl1代码,bl1一般是芯片内部的ROM代码,bl1主要工作就是将外置Flash中的bl2固件加载到指定的RAM中,然后跳转到bl2部分。

bl2为安全启动固件,bl2会将剩余的三个启动阶段bl31、bl32和bl33对应的镜像文件加载到指定的内存中。比如bl32中的安全操作系统(OP-TEE),bl31中的EL3 运行时固件(Runtime Firware),bl33中的uboot。bl2将这些固件加载完成以后就会启动相应的固件,也就是进入到第三启动阶段。

TF-A 启动流程就是:bl1->bl2->(bl31/bl32/bl33)。注意,bl31、bl32和bl33对应的镜像不需要全部都有,但是bl33一般是必须的,因为bl33一般是uboot

bl1

bl1是TF-A的第一个启动阶段,芯片复位以后就会运行bl1镜像,TF-A 提供了bl1源码。但是,实际上bl1 一般是半导体厂商自己编写的内部Boot ROM代码,并没有使用TF-A提供的bl1镜像,比如STM32MP1的内部ROM代码就是bl1。

一般bl1要做的就是初始化CPU,如果芯片支持不同的启动设备,那么还需要初始化不同的启动设置 ,比如NAND、EMMC、SD、USB或串口等。然后根据BOOT引脚的高低电平来判断当前所选择的启动设备,从对应的启动设备中加载bl2镜像,并放到对应的内存中,最后跳转到bl2镜像并运行

bl2

bl2会进一步的初始化芯片,比如初始化DDR、MMU、串口等。bl2会将剩下三个阶段(bl31、bl32和bl33)对应的镜像加载到指定的内存中,最后根据实际情况来启动剩下三个阶段的镜像。

bl31

在AArch64中,bl31主要是EL3的Runtime固件。(只有AArch64涉及,AArch32没有)。

bl32

bl32一般为安全系统 (TEE OS)固件,比如OP-TEE。 TF-A为AArch32提供了EL3的Runtime软件,这个Runtime软件就是bl32固件,sp_min就是这个Runtime软件。在TF-A的源码bl32文件夹下,就有一个“sp_min”的子文件夹,就是bl32的sp_min源码。

STM32MP1的bl32部分可以使用OP-TEE,也可以使用 sp_min,在正点原子的教程中,为了学习的简便,选择采用sp_min作为bl32镜像

bl33

bl33就是Normal World下的镜像文件,比如uboot。

至此,对TF-A的基本启动流程有了一个大概的了解,我们知道了TF-A分为多个阶段,不同的阶段其工作内容不同。但是,在实际的开发中并不一定会用到TF-A中所有启动阶段。接下来我们就会以STM32MP1为例,看一下 ST是如何在自家的STM32MP1中使用TF-A的

STM32MP1中的TF-A

STM32MP1 TF-A框架

STM32MP1支持TrustZone,所以ST提供的软件包包含了安全固件。相比传统ARM处理器(如ARM9、ARM11等 )最常见的uboot和linux kernel,STM32MP1的软件包还另外提供了TF-A、OP-TEE等安全相关的关键软件,因此STM32MP1的整体软件框架必然和传统的ARM芯片不同,STM32MP1软件架构如下图所示:
STM32MP1软件框架
上图中从左到右分为三部分:Cortex-A7 Secure、Cortex-A7 Non-Secure和Cortex-M4,Cortex-M4属于裸机开发部分,不是linux驱动部分,这个教程不涉及。所以就剩下了Cortex-A7 Secure、Cortex-A7 Non-Secure,也就是A7的安全和非安全两种情况

在Cortex-A7 Secure下重点是TF-A和OP-TEE,TF-A是用于完成安全启动的, OP-TEE是TEE OS,如果使用OP-TEE的话它会和linux内核同时运行, OP-TEE负责可信应用,linux就是普通的应用程序。在Cortex-A7 Non-Secure下就是传统的ARM软件框架:uboot、linux kernel和根文件系统。

之前已经讲解过,TF-A分为了不同阶段:bl1、bl2、bl31、bl32和bl33,这个主要是面向AArch64的,对于 AArch32而言只有4个阶段:

  • bl1:第1个阶段,一般为芯片内部ROM代码;
  • bl2:第2个阶段,可信启动固件;
  • bl32:EL3运行时(Runtime)软件;
  • bl33:非安全固件,比如uboot。

其中 bl1、bl2和bl32都属于TF-A的一部分 (如果使用 TF-A提供的bl1的话)。

STM32MP1下的bl1

bl1部分是可选的,在编译STM32MP1的TF-A的时候可以通过添加BL2_AT_EL3编译选项来移除bl1,默认情况下ST提供的TF-A源码是有添加BL2_AT_EL3编译选项的,在TF-A源码里面找到tf-a-stm32mp-2.2.r1/plat/st/stm32mp1/platform.mk,此文件定义了 STM32MP1这个平台的编译选项,有下图配置:
STM32MP1编译配置文件
可以看出,platform.mk文件定了BL2_AT_EL3为1,因此在编译STM32MP1平台对应的TF-A的时候不会编译bl1部分,STM32MP1内部ROM代码完成了TF-A中的bl1部分的工作,主要就是将外部 Flash中的bl2代码加载到内部RAM中并运行

STM32MP1下的bl2

bl2为可信启动固件,在STM32MP1中就是TF-A的bl2部分,bl2的主要功能就是加载下面几个阶段的固件到内存中,因此bl2需要初始化所要用到的外设。

首先是安全部分,STM32MP1的bl2部分会初始化的外设如下:

  1. BOOT、安全和OTP控制器,也就是BSEC外设;
  2. 扩展的TrustZone保护控制器,也就是ETZPC外设;
  3. TrustZone针对DDR的地址空间保护控制器,也就是TZC外设。

由于bl2需要从外部Flash中加载下一阶段镜像,因此还需要初始化一些外部Flash,例如:

  1. SD卡;
  2. EMMC;
  3. NAND;
  4. NOR。

最后,STM32MP1的bl2还需要初始化一些其他外设:

  1. DDR内存;
  2. 时钟;
  3. 串口,用于调试以及使用STM32CubeProgrammer时需要串口下载系统;
  4. USB,用STM32CubeProgrammer通过USB烧写系统。

bl2还需要对镜像进行验证和鉴权,鉴权是通过调用内部 ROM代码的鉴权服务来完成。最后,bl2会加载bl32和bl33的固件到指定的内存区域,并跳转到bl32,bl32接着运行。

STM32MP1下的bl32

bl32提供运行时安全服务,在TF-A中默认使用sp_min。sp_min是一个最小的AArch32安全负载(Secure Payload),整合了PSCI库以及AArch32的EL3运行时软件。sp_min可以替代可信系统(TEE OS)或者可信执行环境(TEE),比如OP-TEE。当然了,STM32MP1同时支持sp_min以及OP-TEE,用户可以自行选择bl32使用哪个软件包。正点原子是选择用sp_min。

bl32充当安全监控(secure monitor),因此它向非安全系统(non-secure os,比如 linux)提供了一些安全服务。非安全的应用软件可以通过安全监控调用(secure monitor calls)来使用这些安全服务,这些代码支持标准的服务调用,比如PSCI。

另外,bl32也支持ST32MP1所特有的一些安全服务,可以访问特有的安全外设,比如 RCC、PWR、RTC或BSEC。

STM32MP1下的bl33

bl33就是传统的 uboot,并不属于TF-A本身。

简单总结一下,默认情况下TF-A有bl1、bl2、bl31、bl32和bl33这几个启动阶段。如果bl32使用sp_min的话那么 bl1、bl2、bl31和bl32都属于TF-A。但是对于STM23MP1而言,因为其使用的是AArch32,因此没有bl31部分。而bl1部分ST又没有用TF-A提供的,采用的是STM32MP1内部ROM代码,因此就只剩下了bl2和bl32。所以对于STM32MP1而言,TF-A就两个固件:bl2 和bl32(sp_min),TF-A 源码也采用了设备树(device tree)来设备信息,因此对于STM32MP1 而言TF-A 一共有三部分:设备树、bl2和bl32,这三部分在编译的时候会被合并成一个二进制文件。当然了,还要在最前面加上重要的头部信息,最终这4部分就组成了我们烧写到外部flash中的TF-A镜像,比如之前讲义中中烧写到EMMC 中的tf-a-stm32mp157datk-trusted.stm32,其文件结构如下图所示:
TF-A镜像组织结构
STM32MP1的TF-A启动流程如下图所示:
STM32MP1 TF-A启动流程
上图中TF-A 启动分了5步,这5步的含义如下:

  1. 复位以后内部ROM加载TF-A整个镜像,然后运行bl2镜像;
  2. bl2将bl32镜像加载到指定内存区域;
  3. bl2将bl33镜像加载到指定内存区域;
  4. bl2执行完毕以后就会跳转到bl32镜像;
  5. bl32镜像执行完以后跳转到bl33镜像,也就是uboot。

最后,uboot引导非安全系统,也就是linux内核。

STM32MP1 TF-A镜像存储映射

上一小节讲了,最终烧写到STM32MP1里面的TF-A镜像有4部分,除去头部信息,还有设备树、bl2和bl32。这3部分虽然被打包在了一起,但是实际是三部分,比如bl2是一个镜像,bl32是另外一个镜像,其执行顺序都是不一样的!当加载到内存上以后这3部分的存储映射如下图所示:
TF-A存储分配
上图中TF-A各部分存储映射不是固定的,编译TF-A的时候配置不同,其存储地址也不同,重点是存储映射形式

TF-A的基础知识就讲解到这里,对TF-A有了初步的认识,了解了STM32MP1中的TF-A组织形式,方便我们后续学习。

总结

这一章节学习的就是TF-A源码的一些基本框架,熟悉了ARMv7和ARMv8的工作模式,我们的STM32MP157开发板是32位的,也就是工作在AArch32模式,TF-A主要工作在EL3级别下

对于ST公司的这块STM32MP157开发板,TF-A主要就是bl2、bl32以及设备树(bl1已经被写在ROM代码中了来启动bl2镜像,bl33是uboot不属于TF-A)。

这一章后面还有一个TF-A的启动流程详解,但是文档中还没有更新,后续有更新了我会补充上来的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/146493.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PHP 反序列化漏洞:__PHP_Incomplete_Class 与 serialize(unserialize($x)) !== $x;

文章目录 参考环境声明__PHP_Incomplete_Class灵显为什么需要 __PHP_Incomplete_Class?不可访问的属性 serialize(unserialize($x)) $x;serialize(unserialize($x)) ! $x;雾现__PHP_Incomplete_Class 对象与其序列化文本的差异试构造 __PHP__Incomplete_Class 对象…

UE5.1编辑器拓展【二、脚本化资产行为,快速更改资产名字,1.直接添加前缀或后缀2.通过资产类判断添加修改前缀】

目录 了解相关的函数 第一种做法:自定义添加选择资产的前缀或后缀 代码 效果 第二种做法:通过映射来获取资产类型添加前缀和修改前缀 映射代码 代码 效果 在之前一章中,我们创建了插件,用来扩展编辑器的使用: …

VS Code 如何搭建 C/C++开发环境

目录 VScode是什么? VScode的下载和安装? 2.1 下载和安装 安装: 2.2 环境的介绍 环境介绍:​编辑 安装中文插件: VScode配置 C/C 开发环境 3.1 下载和配置MinGW-w64 编译器套件 下载: 配置MinGW64: 3.2 安…

加入PreAuthorize注解鉴权之后NullPointerException报错

记录一次很坑的bug,加入PreAuthorize注解鉴权之后NullPointerException报错,按理来说没有权限应该403报错,但是这个是500报错,原因是因为controller层的service注入失败,然而我去掉注解后service注入成功,并…

python之股票财务分析

#import akshare as ak import pandas as pd import matplotlib.pyplot as plt symbol1"资产负债表" symbol2"利润表" symbol3"现金流量表" #df1ak.stock_financial_report_sina(stock"601633",symbolsymbol1) #df2ak.stock_financial…

数据结构刷题(三十三):完全背包最小值情况。322. 零钱兑换、279. 完全平方数

题目一: 322. 零钱兑换https://leetcode.cn/problems/coin-change/ 思路:完全背包问题,求解最小组合数。dp[j]:凑足总额为j所需钱币的最少个数为dp[j]。同时需要确保凑足总金额为0所需钱币的个数一定是0,那么dp[0] 0…

001 Python开发环境搭建

1、下载python 2023/10 python-3.11.5-amd64.exehttps://www.python.org/ftp/python/3.11.5/python-3.11.5-amd64.exe 2、下载Visual Studio Code 2023/10 VSCodeSetup-x64-1.82.2.exehttps://code.visualstudio.com/docs/?dvwin64 3、安装python 双击打开python-3.11.5-a…

SpringCloud Alibaba - Sentinel 授权规则、自定义异常结果

目录 一、授权规则 1.1、什么是授权规则 1.2、授权规则的配置 1.2.1、配置信息介绍 1.2.2、如何得到请求来源 1.2.3、实现步骤 a)给网关过来的请求添加请求头信息 b)在 订单微服务 中实现 RequestOriginParser 接口中的 parseOrigin 方法 c&…

排序:外部排序算法分析

1.外存与内存之间的数据交换 1.外存(磁盘) 操作系统以“块”为单位对磁盘存储空间进行管理,如:每块大小1KB 各个磁盘块内存放着各种各样的数据。 2.内存 磁盘的读/写以“块”为单位数据读入内存后才能被修改修改完了还要写回磁盘。 2.外…

Jmeter分布式压力测试

目录 1、场景 2、原理 3、注意事项 4、slave配置 5、master配置 6、脚本执行 1、场景 在做性能测试时,单台机器进行压测可能达不到预期结果。主要原因是单台机器压到一定程度会出现瓶颈。也有可能单机网卡跟不上造成结果偏差较大。 例如4C8G的window server机…

2023-10-01 LeetCode每日一题(买卖股票的最佳时机)

2023-10-01每日一题 一、题目编号 121. 买卖股票的最佳时机二、题目链接 点击跳转到题目位置 三、题目描述 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一…

[NOIP2012 提高组] 国王游戏(贪心,排序,高精度)

[NOIP2012 提高组] 国王游戏 题目描述 恰逢 H 国国庆,国王邀请 n n n 位大臣来玩一个有奖游戏。首先,他让每个大臣在左、右手上面分别写下一个整数,国王自己也在左、右手上各写一个整数。然后,让这 n n n 位大臣排成一排&…

Mac程序坞美化工具 uBar

uBar是一款为Mac用户设计的任务栏增强软件,它可以为您提供更高效和更个性化的任务管理体验。 以下是uBar的一些主要特点和功能: 更直观的任务管理:uBar改变了Mac上传统的任务栏设计,将所有打开的应用程序以类似于Windows任务栏的方…

xilinx的原语的使用

xilinx的原语的使用 在学习FPGA实现千兆网时需要GMII转RGMII,这就涉及了原语的使用,特此记录! 一、原语 与RGMII接口相关的原语: BUFG:全局时钟网络 BUFIO:只能采集IO的数据,采集IO数据的时候延时是最低的…

浅谈OV SSL 证书的优势

随着网络威胁日益增多,保护网站和用户安全已成为每个企业和组织的重要任务。在众多SSL证书类型中,OV(Organization Validation)证书以其独特的优势备受关注。让我们深入探究OV证书的优势所在,为网站安全搭建坚实的防线…

【自定义类型】--- 位段、枚举、联合

💓博客主页:江池俊的博客⏩收录专栏:C语言进阶之路👉专栏推荐:✅C语言初阶之路 ✅数据结构探索💻代码仓库:江池俊的代码仓库🎉欢迎大家点赞👍评论📝收藏⭐ 文…

React18+Ts项目配置husky、eslint、pretttier、commitLint

前言 我的项目版本如下: React: V18.2.0Node.js: V16.14.0TypeScript:最新版工具: VsCode 本文将采用图文详解的方式,手把手带你快速完成在React项目中配置husky、prettier、commitLint,实现编码规范的统…

使用sqlmap获取数据步骤

文章目录 1.使用sqlmap获取所有数据库2.使用sqlmap获取当前连接数据库3.使用sqlmap获取当前数据库下所有表名4.使用sqlmap获取当前数据库下某个表下所有列名5.使用sqlmap获取当前数据库下某个表下指定字段的数据6.测试当前用户是否是管理员7.使用burpsqlmap批量检测8.脱库命令9…

算法竞赛备赛之贪心算法训练提升,贪心算法基础掌握

1.区间问题 905.区间选点 给定N个闭区间[ai, bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。 输出选择的点的最小数量,位于区间端点上的点也算作是区间内。 将每个按区间的右端点从小到大排序 从前往后依次枚举每…

记录:Unity脚本的编写

目录 前言添加脚本到unity编写c#脚本查看效果 前言 在学习软件构造这门课的时候,对unity和c#进行了 一定程度的学习,包括简单的建立地形,添加对象,添加材质等,前不久刚好学习了如何通过c#脚本对模型进行操控&#xff…