长剖与贪心+树上反悔贪心:1004T4

长剖的本质是一种贪心。(启发式合并本质也是类似哈夫曼树的过程)

在此题中,首先肯定变直径,然后选端点为根。然后选叶子。而每个叶子为了不重复计算,可以只计算其长剖后所在链的贡献。(本题精髓,用长剖来贪心)

然后钦定某个点必选,就是一种反悔贪心。很显然的思路是删掉排名 2 ∗ k − 1 2*k-1 2k1 的叶子,但考虑:

在这里插入图片描述

所以需要考虑离其最近被选的点


#include<bits/stdc++.h>
using namespace std;
//#define int long long
inline int read(){int x=0,f=1;char ch=getchar(); while(ch<'0'||
ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;}
#define Z(x) (x)*(x)
#define pb push_back
//mt19937 rand(time(0));
//mt19937_64 rand(time(0));
//srand(time(0));
#define N 500010
//#define M
//#define mo
struct node { int x; long long y, z; };
int n, m, i, j, k, T, p1, p2, in[N];
int u, v, w, qe; 
vector<node>G[N]; struct Tree {int i, j, k, rt, mn[N]; long long h[N], mxh[N], mx[N], sum[N]; int son[N], dep[N], top[N]; int f[N][22], rk[N], dfn[N]; node w[N]; void dfs1(int x, int fa, int &p1) {//p1 p2if(h[x]>h[p1]) p1=x;  for(auto t : G[x]) {int y=t.y; long long z=t.z; if(y==fa) continue; h[y]=h[x]+z; dfs1(y, x, p1); }}void dfs2(int x, int fa) { //son[x] h[x] dep[x]dep[x]=dep[fa]+1; mx[x]=mxh[x]=h[x]; for(auto t : G[x]) {int y=t.y; long long z=t.z; if(y==fa) continue; h[y]=h[x]+z; 
//			printf("%lld(%lld) --%lld-> %lld(%lld)\n", x, h[x], z, y, h[y]); dfs2(y, x); mx[x]=max(mx[x], mx[y]); if(mxh[y]>mxh[son[x]]) son[x]=y; }if(son[x]) mxh[x]=mxh[son[x]]; }void dfs3(int x, int fa, int tp) {//top[x] w[x] 
//		printf("> %d\n", tp); top[x]=tp; f[x][0]=fa; if(in[x]==1 && fa) {w[x].y=h[x]-h[f[top[x]][0]]; w[x].x=x; }for(auto t : G[x]) {int y=t.y; 			if(y==fa) continue; if(y==son[x]) dfs3(y, x, tp); else dfs3(y, x, y); }}void init() {
//		for(i=1; i<=n; ++i) printf("%d ", top[i]); printf("\n"); 
//		for(i=1; i<=n; ++i) printf("%d ", h[i]); printf("\n"); sort(w+1, w+n+1, [] (node x, node y) { return x.y<y.y; }) ; reverse(w+1, w+n+1); for(i=1; i<=n; ++i) {
//			printf("%lld(%lld) ", w[i].y, w[i].x); if(w[i].x) sum[i]=w[i].y, rk[w[i].x]=i, dfn[i]=w[i].x; sum[i]+=sum[i-1]; }
//		printf("\n"); for(k=1; k<=19; ++k) for(i=1; i<=n; ++i) f[i][k]=f[f[i][k-1]][k-1]; }void dfs4(int x, int fa) {if(in[x]==1 && fa) mn[x]=rk[x]; else mn[x]=1e9; for(auto t : G[x]) {int y=t.y, z=t.z; if(y==fa) continue; dfs4(y, x); mn[x]=min(mn[x], mn[y]); //排名最小 }}int tiao(int x, int g) {for(k=19; k>=0; --k)if(mn[f[x][k]]>g) x=f[x][k]; return f[x][0]; }int lca(int x, int y) {if(x==y) return x; if(dep[x]<dep[y]) swap(x, y); for(int k=19; k>=0; --k)if(dep[f[x][k]]>=dep[y]) x=f[x][k]; if(x==y) return x; for(int k=19; k>=0; --k)if(f[x][k]!=f[y][k]) x=f[x][k], y=f[y][k]; return f[x][0]; }long long calc(int y, int oldy, int newx) {
//		printf("Lca(%d %d) : %d\n", oldy, newx, lca(oldy, newx)); 
//		return min(w[mn[y]].y, h[oldy]-h[lca(oldy, newx)]); return min(w[mn[y]].y, h[oldy]-h[y]); }long long que(int x, int k) {if(k==1) {
//			int y=dfn[mn[x]]; return h[y]; return mx[x]; }if(mn[x]<=2*k-1) {return sum[min(2*k-1, n)]; }int y=tiao(x, 2*k-1), newx, oldy; long long ans; newx=dfn[mn[x]]; oldy=dfn[mn[y]]; 
//		printf("%d | %d %d %d %d\n", y, newx, oldy, (h[newx]-h[y]), calc(y, oldy, newx)); ans=sum[2*k-1]-calc(y, oldy, newx)+(h[newx]-h[y]); ans=max(ans, sum[2*k-1]-w[2*k-1].y+(h[newx]-h[y])); return ans; }
}T1, T2;void print(long long x) {if(x) print(x/10), putchar(x%10+'0'); 
}signed main()
{
//	freopen("in.txt", "r", stdin);
//	freopen("out.txt", "w", stdout);freopen("bomb.in", "r", stdin);freopen("bomb.out", "w", stdout);
//	T=read();
//	while(T--) {
//
//	}n=read(); qe=read(); for(i=1; i<n; ++i) {u=read(); v=read(); w=read(); G[u].pb({u, v, w}); G[v].pb({v, u, w}); ++in[u]; ++in[v]; }T1.h[1]=0;  T1.dfs1(1, 0, p1); T1.h[p1]=0; T1.dfs1(p1, 0, p2);T1.rt=p1; T2.rt=p2; T1.h[p1]=0; T1.dfs2(p1, 0); T2.h[p2]=0; T2.dfs2(p2, 0); 
//	printf("%d %d\n", p1, p2); T1.dfs3(p1, 0, p1); T2.dfs3(p2, 0, p2); T1.init(); T2.init(); T1.dfs4(p1, 0); T2.dfs4(p2, 0); while(qe--) {u=read(); k=read(); print(max(T1.que(u, k), T2.que(u, k))); puts(""); }return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/148542.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVAWeb业务层开发->普通和基于MP

普通方式业务层开发 service定义接口&#xff08;主要实现逻辑层面的业务功能&#xff09; serviceImpl实现该接口 注意事项&#xff1a; 逻辑判断的代码可以使用&#xff1e;号&#xff0c;使得返回结果为布尔类型。 小结&#xff1a;每一个接口写完都要写测试类去检测&#…

uni-app:canvas-绘制图形2

效果 代码 <template><view><!-- 创建了一个宽度为300像素&#xff0c;高度为200像素的canvas元素。canvas-id属性被设置为"firstCanvas"&#xff0c;可以用来在JavaScript中获取该canvas元素的上下文对象。 --><canvas style"width:200px…

分布式事务-Seata

一、理论基础 1、CAP定理 1998年&#xff0c;加州大学的计算机科学家 Eric Brewer 提出&#xff0c;分布式系统有三个指标&#xff1a; • Consistency &#xff08;一致性&#xff09; • Availability &#xff08;可用性&#xff09; • Partition tolerance &#xff08…

【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Swift SwiftUI CoreData 过滤数据 1

Xcode: Version 14.3.1 (14E300c) iOS: 16 预览&#xff1a; Code: import SwiftUI import CoreDatastruct TodosSearch: View {State private var search_title "测试"FetchRequest var todos_search: FetchedResults<Todo>init() {let request: NSFetchReq…

【LeetCode热题100】--153.寻找旋转排序数组中的最小值

153.寻找旋转排序数组中的最小值 由于该排序数组经由1到n次旋转&#xff0c;所以旋转后的数组折线图为&#xff1a; 最小值处于中间&#xff0c;同时对于最后一个元素x&#xff1a;在最小值右侧的元素&#xff0c;它们的值一定严格小于x,而在最小值左侧的元素&#xff0c;它们的…

数据结构与算法(C语言版)P8---树、二叉树、森林

【本节目标】 树概念及结构。二叉树概念及结构。二叉树常见OJ题练习。 1、树概念及结构 1.1、树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一颗倒挂的树&#xf…

新手学习Python用哪个软件比较好?

对于新手学习Python&#xff0c;有几个常用的集成开发环境&#xff08;IDE&#xff09;可以选择。以下是一些受欢迎的选择&#xff0c;可供题主参考下载使用。 集成开发环境&#xff08;IDE&#xff09; 1. PyCharm&#xff1a; PyCharm 是一款功能强大的 Python IDE&#x…

ffmpeg之去除视频水印

ffmpeg去除水印使用delogo视频滤镜。 delogo参数: x,y,w,h分别表示logo区域的左上角位置及宽度和高度&#xff1b; show:0表示不显示logo区域&#xff0c;1表示显示logo区域。 执行下面的命令&#xff1a; ffmpeg -i 1.mp4 -vf delogox300:y10:w80:h30:show0 out.mp4 效果…

二叉树经典例题

前言&#xff1a; 本文主要讲解了关于二叉树的简单经典的例题。 因为二叉树的特性&#xff0c;所以关于二叉树的大部分题目&#xff0c;需要利用分治的思想去递归解决问题。 分治思想&#xff1a; 把大问题化简成小问题&#xff08;根节点、左子树、右子树&#xff09;&…

91、Redis - 事务 与 订阅-发布 相关的命令 及 演示

★ 事务相关的命令 Redis事务保证事务内的多条命令会按顺序作为整体执行&#xff0c;其他客户端发出的请求绝不可能被插入到事务处理的中间&#xff0c; 这样可以保证事务内所有命令作为一个隔离操作被执行。 Redis事务同样具有原子性&#xff0c;事务内所有命令要么全部被执…

k8s集群-6(daemonset job cronjob控制器)

Daemonset 一个节点部署一个节点 当有节点DaemonSet 确保全部 (或者某些) 节点上运行一个 Pod 的副本。加入集群时&#xff0c;也会为他们新增一个 Pod 。当有节点从集群移除时&#xff0c;这些Pod 也会被回收。删除 DaemonSet 将会删除它创建的所有 Pod。 DaemonSet 的典型用…

第81步 时间序列建模实战:Adaboost回归建模

基于WIN10的64位系统演示 一、写在前面 这一期&#xff0c;我们介绍AdaBoost回归。 同样&#xff0c;这里使用这个数据&#xff1a; 《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndr…

【Linux】TCP的服务端(守护进程) + 客户端

文章目录 &#x1f4d6; 前言1. 服务端基本结构1.1 类成员变量&#xff1a;1.2 头文件1.3 初始化&#xff1a;1.3 - 1 全双工与半双工1.3 - 2 inet_aton1.3 - 3 listen 2. 服务端运行接口2.1 accept&#xff1a;2.2 服务接口&#xff1a; 3. 客户端3.1 connect&#xff1a;3.2 …

多卡片效果悬停效果

效果展示 页面结构 从页面的结构上看&#xff0c;在默认状态下毛玻璃卡片是有层次感的效果叠加在一起&#xff0c;并且鼠标悬停在卡片区域后&#xff0c;卡片整齐排列。 CSS3 知识点 transform 属性的 rotate 值运用content 属性的 attr 值运用 实现页面整体布局 <div …

【Linux】Linux常用命令—文件管理(下)

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

Facebook Delos 中的虚拟共识协议

背景 Facebook 的软件系统栈一般包括两层&#xff1a;上层是数据平面&#xff0c; 下层是控制平面。 facebook software stack 数据平面包括大量的服务&#xff0c;他们需要存储和处理海量数据。控制平面用来支撑数据平面&#xff0c;起到一些控制作用&#xff1a;调度、配置…

便捷方式定制真人3D手办,易模小程序即将上线

这个十月一&#xff0c;您是否在商场或者一些门店门前“偶遇”了惟妙惟肖的等比例缩小的真人手办&#xff1f;是否心动想要制作一个却因犹豫不决而就此错过&#xff1f;现在&#xff0c;更便捷的真人手办定制方法就在你的微信里~【易模真人手办定制】小程序即将上线&#xff01…

苹果ios应用ipa文件签名为什么需要签名才能上架?有没有别的方式替代苹果签名?

近年来&#xff0c;苹果设备的普及程度逐渐加深&#xff0c;随之而来的是越来越多的应用程序涌入了苹果的应用商店。为了保障用户设备和数据的安全&#xff0c;以及减少恶意程序和恶意软件的传播&#xff0c;苹果公司实行了一套严格的应用安全机制&#xff0c;其中就包括应用程…

mysql面试题18:MySQL中为什么要用 B+树,为什么不用二叉树?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:MySQL中为什么要用 B+树,为什么不用二叉树? MySQL数据库索引是一种数据结构,用于提高数据查询的效率。在MySQL中,常用的索引类型包括B+树索引…