【数据结构与算法】树、二叉树的概念及结构(详解)

前言:

💥🎈个人主页:​​​​​​Dream_Chaser~ 🎈💥

✨✨专栏:http://t.csdn.cn/oXkBa

⛳⛳本篇内容:c语言数据结构--树以及二叉树的概念与结构

目录

一.树概念及结构

1.树的概念

1.1树与非树

树的特点:

非树(图)的特点:

1.2 关于树的细致概念

1.3树的表示

1.4树在实际中的运用(表示文件系统的目录树结构)

二.二叉树概念及结构

1.概念

2.现实中的二叉树:

 2.3特殊的二叉树:

2.4 二叉树的性质

证明性质2和1

习题练习


一.树概念及结构

1.树的概念

         树是一种 非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

1.1树与非树

树的特点:
空树 -- 结点数为0的树
非空树:
  • 有一个特殊的结点,称为根结点,根节点没有前驱结点(没有父节点)

下面的两点一起理解:

  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

可以理解为:

由根节点指向了各子树,子树的双亲节点又可以作为根节点,指向它们的孩子节点

非树(图)的特点:
1.除了根结点外,每个结点有且仅有一个父结点;

2.子树是不相交的
以下的这个结构是图(允许相交),不是树
注意:树形结构中,子树之间不能有交集,否则就不是树形结构

3.一棵N个结点的树有N-1条边

1.2 关于树的细致概念

下面有个✅的是比较重要的知识点

✅节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

✅叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

✅非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

✅双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

✅孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

✅兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

✅树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

✅节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

✅子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林

对各知识点的进一步画图解析:

  • 节点的度:与该节点直接相连的边的数量

  • 叶节点(终端节点):度为0的节点

  • 分支节点(非终端节点):度不为0的节点

  • 父节点(双亲节点):一个节点的直接前驱就是它的父节点

  • 子节点(孩子节点):一个节点的直接后继就是它的子节点
  • 兄弟节点:由同一个父节点生出来的都是互为兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度
  • 节点的层次:从上往下数,从根开始定义起,根为第1层,根的子节点为第2层,以此类推;(默认是从1开始)
  • 树的高度(深度):树中节点的最大层次,下图的高度就是4
  • 节点的高度:从下往上数
  • 堂兄弟节点双亲在同一层的节点互为堂兄弟
  • 节点的祖先指从该节点向上追溯到根节点的路径上的所有节点,包括该节点的父节点、父节点的父节点,以此类推,直到达到根节点为止。
  • 子孙从该节点向下追溯到所有末端节点的路径上的所有节点,包括该节点的直接子节点、子节点的子节点,以此类推,直到达到叶子节点为止。
  • 森林:是由多个不相交的树组成的集合(并查集)

1.3树的表示

A: 如果明确了树的度,那么可以定义。

B、顺序表存储孩子。
 

C、双亲表示法。(每个位置只存双亲的指针或者下标) 

D、左孩子右兄弟表示法--简化树结构定义

         树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。
我们这里就简单的了解其中最常用的孩子兄弟表示法
代码实现:
typedef int DataType;
struct Node
{struct Node* _firstChild1; // 第一个孩子结点struct Node* _pNextBrother; // 指向其下一个兄弟结点DataType _data; // 结点中的数据域
};

画图解析:

1.4树在实际中的运用(表示文件系统的目录树结构)

二.二叉树概念及结构

1.概念

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

 从上图可以看出:

1. 二叉树不存在度大于2的结点(度为0也可以)
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.现实中的二叉树:

 2.3特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。

2.完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.4 二叉树的性质

1、若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点。
2、若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1。
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有 n0= n2+1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度h=log2(n+1). (ps:log2(n+1)是log以2为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

        1. i>0 i 位置节点的双亲序号: (i-1)/2 i=0 i 为根节点编号,无双亲节点
        2. 2i+1<n ,左孩子序号: 2i+1 2i+1>=n 否则无左孩子
        3. 2i+2<n ,右孩子序号: 2i+2 2i+2>=n 否则无右孩子

证明性质2和1

如何证明性质2和性质1,以下是证明过程:

习题练习

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( B)
A 不存在这样的二叉树
B 200
C 198
D 199
解析:
2.下列数据结构中,不适合采用顺序存储结构的是( A)
A 非完全二叉树
B 堆
C 队列
D 栈
解析:
顺序存储结构适合于具有连续存储空间的数据结构,其中元素按照线性顺序存储。 对于非完全二叉树,由于其结构不规则,无法通过连续的存储空间来表示。因此,非完全二叉树不适合采用顺序存储结构。
B. 堆、C. 队列、D. 栈都可以通过顺序存储结构有效地实现。堆是一种完全二叉树,可以使用数组来表示。队列和栈可以使用数组或者链表来表示,都适合顺序存储结构。
3.在具有 2n 个结点的完全二叉树中,叶子结点个数为(A )
A n
B n+1
C n-1
D n/2

和节点个数相关的公式有二:

n0 = n2 + 1,N = n0 + n1 + n2

已知总个数N为2n,那么只要知道n1即可求出n0.

这里有一个重要的结论:

        在完全二叉树中,如果节点总个数为奇数,则没有度为1的节点;如果节点总个数为偶数,只有一个度为1的节点。

                                          节点个数是偶数,只有一个度为1的节点


                                        节点个数是奇数,没有度为1的节点

2n为偶数,因此有一个度为1的节点。

2n = n0 + 1 + n2 = n0 + 1 + n0 - 1

2n = 2n0

n0 = n,故选A

4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( B)
A 11
B 10
C 8
D 12
解析:
根据性质4,h=log2(n+1),n=531,h = log2(532),找一个最接近的数就是log2(512),也就是log2(2^9),向上取整,n=10;
5.一个具有767个节点的完全二叉树,其叶子节点个数为(B)
A 383
B 384
C 385
D 386
解析:
N=767个节点数是奇数个,所以N= n0+ n2(奇数个没有度为1的节点) ,
由n0 = n2+1; N  = 2n0 - 1 ,那么n0 = (N + 1) / 2 = 384 
本篇完,如有错误,欢迎指正,感谢来访!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/148911.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云存储解决方案-阿里云OSS

1. 阿里云OSS简介 阿里云对象存储服务&#xff08;Object Storage Service&#xff0c;简称OSS&#xff09;为用户提供基于网络的数据存取服务。使用OSS&#xff0c;用户可以通过网络随时存储和调用包括文本、图片、音频和视频等在内的各种非结构化数据文件。 阿里云OSS将数据…

Map声明、元素访问及遍历、⼯⼚模式、实现 Set - GO语言从入门到实战

Map声明、元素访问及遍历 - GO语言从入门到实战 Map 声明的方式 m : map[string]int{"one": 1, "two": 2, "three": 3} //m初始化时就已经设置了3个键值对&#xff0c;所以它的初始长度len(m)是3。m1 : map[string]int{} //m1被初始化为一…

Docker启动Mysql

如果docker里面没有mysql需要先pull一个mysql镜像 docker pull mysql其中123456是mysql的密码 docker run --name mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD123456 -d mysql可以使用如下命令进入Mysql的命令行界面 docker exec -it mysql bash登录mysql使用如下命令,root是…

数据结构--》探索数据结构中的字符串结构与算法

本文将带你深入了解串的基本概念、表示方法以及串操作的常见算法。通过深入理解串的相关概念和操作&#xff0c;我们将能够更好地应用它们来解决算法问题。 无论你是初学者还是进阶者&#xff0c;本文将为你提供简单易懂、实用可行的知识点&#xff0c;帮助你更好地掌握串在数据…

在PHP8中使用instanceof操作符检测对象类型-PHP8知识详解

在PHP8中使用instanceof操作符可以检测当前对象属于哪个类。语法格式如下&#xff1a; objectName instanceof classname下面我们用一个实例来讲解使用instanceof操作符检测对象类型。 本实例将将创建3个类&#xff0c;其中有两个类是父类和子类的关系&#xff0c;然后实例化…

JAVA学习(5)-全网最详细~

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

leetCode 376.摆动序列 贪心算法

如果连续数字之间的差严格地在正数和负数之间交替&#xff0c;则数字序列称为 摆动序列 。第一个差&#xff08;如果存在的话&#xff09;可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。 例如&#xff0c; [1, 7, 4, 9, 2, 5] 是一个 摆动序列 &…

图像拼接后丢失数据,转tiff报错rasterfile failed: an unknown

图像拼接后丢失数据 不仅是数据丢失了&#xff0c;还有个未知原因报错 部分数据存在值不存在的情况 原因 处理遥感数据很容易&#xff0c;磁盘爆满了 解决方案 清理一些无用数据&#xff0c;准备买个2T的外接硬盘用着了。 然后重新做处理

[Linux] 4.常用初级指令

pwd&#xff1a;显示当前文件路径 ls:列出当前文件夹下有哪些文件 mkdir空格文件名&#xff1a;创建一个新的文件夹 cd空格文件夹名&#xff1a;进入文件夹 cd..&#xff1a;退到上一层文件夹 ls -a&#xff1a;把所有文件夹列出来 .代表当前文件夹 ..代表上层文件夹 用…

【Vue】Vuex详解,一文读懂并使用Vuex

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《ELement》。&#x1f3af;&#x1f3af; &#x1…

【15】c++设计模式——>抽象工厂模式

在海贼世界中&#xff0c;位于水之都的弗兰奇一家是由铁人弗兰奇所领导的以拆船为职业的家族&#xff0c;当然了他们的逆向工程做的也很好&#xff0c;会拆船必然会造船。船是海贼们出海所必备的海上交通工具&#xff0c;它由很多的零件组成&#xff0c;从宏观上看它有这么几个…

智慧财务管家,记录分析收支明细,轻松掌握财务情况并随时打印保存!

在日常的财务管理中&#xff0c;准确记录和分析收支明细是掌握财务情况、制定科学预算和实现财务目标的重要一环。然而&#xff0c;繁琐的手动记录和分析过程常常让我们感到头痛。现在&#xff0c;让我们向您推荐一款智慧财务管家&#xff0c;帮助您轻松记录和分析收支明细&…

仿函数的学习

仿函数 也叫 函数对象 仿函数是什么东西&#xff1f; 当你第一眼看到下面的代码的时候&#xff0c;你会觉得它是一个函数的调用&#xff1a; bool result less(a, b);但是我如果告诉你&#xff0c;less 是一个我自定义的一个类的对象呢&#xff1f; class Less { public:bo…

Interference Signal Recognition Based on Multi-Modal Deep Learning

系统结构 基于决策的融合实际上是用损失函数监督融合模型 其中 N N N是训练样本的数量 体会 作者未解释公式4的 t i t_i ti​的含义且不公布代码

elment以及elementPlus选中组件出现黑框问题解决!!

目录 问题&#xff1a; 图示&#xff1a; 解决方案&#xff1a; 问题&#xff1a; 使用elementPlus的按钮组件&#xff0c;点击按钮后会出现黑框&#xff0c;除非点击其他地方才能取消掉&#xff08;之前使用elment-ui其它组件时也出现过&#xff09; 图示&#xff1a; 解决方案…

Day-07 修改 Nginx 配置文件

至此&#xff1a; 简单的 Docker 安装 Nginx并启动算是成功了! ps: 如何修改 Nginx的配置、更改nginx 的资源文件&#xff1f; eg&#xff1a; 1、可以将容器中的目录和本机目录做映射。 2、达到修改本机目录文件就影响到容器中的文件。 1.本机创建实例文件夹 新建目录&#x…

【机器学习-黑马程序员】人工智能、机器学习概述

文章目录 前言一、人工智能概述二、什么是机器学习二、机器学习算法分类三、机器学习开发流程 前言 本专栏文章为观看黑马程序员《python机器学习》所做笔记&#xff0c;课程地址在这。如有侵权&#xff0c;立即删除。 一、人工智能概述 机器学习和人工智能、深度学习的关系 机…

即时通讯软件

通信协议 发送消息可以是个struct 客户端分两个线程&#xff1a;读取服务器&#xff0c;给服务器发&#xff08;否则会导致阻塞&#xff09; read和write的第二个参数类型是&#xff1a;void *buf——————不仅仅是一个字符串&#xff0c;也可以是一个结构体等等&#xf…

获取沪深300的所有个股列表

脚本&#xff1a; import requests from bs4 import BeautifulSoupurl "https://q.stock.sohu.com/cn/bk_4444.shtml" response requests.get(url) soup BeautifulSoup(response.text, "html.parser")# 找到包含class为e1的元素 elements soup.find_a…

NodeMCU ESP8266硬件开发板的熟悉

文章目录 硬件开发环境的熟悉基础介绍什么是 ESP8266 NodeMCU&#xff1f;NodeMCU芯片ESP12-E 模组开发板 ESP8266 版本引脚图Power GND I2CGPIOADCUARTSPIPWMControl 总结 硬件开发环境的熟悉 基础介绍 什么是 ESP8266 NodeMCU&#xff1f; ESP8266是乐鑫开发的一款低成本 …