十天学完基础数据结构-第九天(堆(Heap))

在这里插入图片描述

堆的基本概念

是一种特殊的树形数据结构,通常用于实现优先级队列。堆具有以下两个主要特点:

  1. 父节点的值始终大于或等于其子节点的值(最大堆),或者父节点的值始终小于或等于其子节点的值(最小堆)

  2. 堆是一棵完全二叉树,这意味着所有层级除了最后一层都是完全填满的,最后一层从左到右填充。

最大堆和最小堆的定义

  • 最大堆(Max Heap):在最大堆中,父节点的值始终大于或等于其子节点的值,这意味着根节点是堆中的最大元素。

  • 最小堆(Min Heap):在最小堆中,父节点的值始终小于或等于其子节点的值,这意味着根节点是堆中的最小元素。

堆的常见操作

堆支持一些常见的操作,包括:

  • 插入(Insertion):将新元素插入堆中,然后重新调整堆,以维护堆的性质。

  • 删除(Deletion):删除堆中的根节点,然后重新调整堆,以维护堆的性质。

  • 堆排序(Heap Sort):使用堆进行排序,将堆顶元素(最大或最小元素)与最后一个元素交换,然后减小堆的大小,并重新调整堆,重复此过程直到排序完成。

任务

堆在许多算法中都有广泛应用,包括Dijkstra算法、优先级队列等。掌握堆排序算法,这是一种高效的排序算法。

示例代码 - 使用C++创建最大堆和进行堆排序:

#include <iostream>
#include <vector>
#include <algorithm>class MaxHeap {
public:MaxHeap() {}// 插入元素void insert(int value) {heap.push_back(value);int index = heap.size() - 1;heapifyUp(index);}// 删除最大元素void removeMax() {if (isEmpty()) {return;}std::swap(heap[0], heap.back());heap.pop_back();heapifyDown(0);}// 堆排序void heapSort() {int n = heap.size();for (int i = n / 2 - 1; i >= 0; i--) {heapifyDown(i);}for (int i = n - 1; i > 0; i--) {std::swap(heap[0], heap[i]);heapifyDown(0, i);}}// 判断堆是否为空bool isEmpty() {return heap.empty();}private:std::vector<int> heap;void heapifyUp(int index) {while (index > 0) {int parent = (index - 1) / 2;if (heap[index] <= heap[parent]) {break;}std::swap(heap[index], heap[parent]);index = parent;}}void heapifyDown(int index, int size = -1) {if (size == -1) {size = heap.size();}while (true) {int leftChild = 2 * index + 1;int rightChild = 2 * index + 2;int largest = index;if (leftChild < size && heap[leftChild] > heap[largest]) {largest = leftChild;}if (rightChild < size && heap[rightChild] > heap[largest]) {largest = rightChild;}if (largest == index) {break;}std::swap(heap[index], heap[largest]);index = largest;}}
};int main() {MaxHeap maxHeap;maxHeap.insert(5);maxHeap.insert(10);maxHeap.insert(3);maxHeap.insert(8);maxHeap.insert(1);std::cout << "堆排序前:";for (int num : maxHeap) {std::cout << num << " ";}maxHeap.heapSort();std::cout << "\n堆排序后:";for (int num : maxHeap) {std::cout << num << " ";}return 0;
}

练习题

  1. 解释堆的基本概念中的最大堆和最小堆的定义。

  2. 描述堆排序的步骤。

  3. 为什么堆可以用于高效的优先级队列实现?

  4. 在给定的一组元素中,如何创建一个最大堆?使用C++编写相应的代码。

  5. 在给定的一组元素中,如何使用堆排序进行排序?使用C++

解释堆的基本概念中的最大堆和最小堆的定义。

  • 最大堆(Max Heap):在最大堆中,每个父节点的值都大于或等于其子节点的值。这意味着根节点包含堆中的最大元素。

  • 最小堆(Min Heap):在最小堆中,每个父节点的值都小于或等于其子节点的值。这意味着根节点包含堆中的最小元素。

描述堆排序的步骤。

堆排序是一种原地、稳定的排序算法,它的步骤如下:

  • 构建一个最大堆或最小堆,将数组视为堆。

  • 不断从堆顶(最大值或最小值)移除元素,并将其放入已排序部分的末尾。

  • 重复第二步,直到堆为空。

这个过程保证了每次移除的元素都是当前堆中的最大(最小)值,因此最终得到一个有序的数组。

为什么堆可以用于高效的优先级队列实现?

堆可以用于高效的优先级队列实现,因为堆的结构允许我们快速找到并删除最大(最小)元素,以及迅速插入新元素。这在许多算法和数据结构中都非常有用,如Dijkstra算法、Prim算法、任务调度等。堆的时间复杂度为O(log n),其中n是堆的大小,这使得优先级队列的操作非常高效。

在给定的一组元素中,如何创建一个最大堆?使用C++编写相应的代码。

创建最大堆的关键是从数组构建一个满足最大堆性质的堆。以下是使用C++创建最大堆的示例代码:

#include <iostream>
#include <vector>void maxHeapify(std::vector<int>& arr, int size, int i) {int largest = i;int left = 2 * i + 1;int right = 2 * i + 2;if (left < size && arr[left] > arr[largest]) {largest = left;}if (right < size && arr[right] > arr[largest]) {largest = right;}if (largest != i) {std::swap(arr[i], arr[largest]);maxHeapify(arr, size, largest);}
}void buildMaxHeap(std::vector<int>& arr) {int size = arr.size();for (int i = size / 2 - 1; i >= 0; i--) {maxHeapify(arr, size, i);}
}int main() {std::vector<int> arr = {4, 10, 3, 5, 1};int size = arr.size();buildMaxHeap(arr);std::cout << "最大堆:";for (int num : arr) {std::cout << num << " ";}return 0;
}

运行结果:在这里插入图片描述

在给定的一组元素中,如何使用堆排序进行排序?使用C++编写相应的代码。

堆排序的关键是将堆顶元素与数组末尾元素交换,然后减小堆的大小并重新调整堆。以下是使用C++进行堆排序的示例代码:

#include <iostream>
#include <vector>void maxHeapify(std::vector<int>& arr, int size, int i) {int largest = i;int left = 2 * i + 1;int right = 2 * i + 2;if (left < size && arr[left] > arr[largest]) {largest = left;}if (right < size && arr[right] > arr[largest]) {largest = right;}if (largest != i) {std::swap(arr[i], arr[largest]);maxHeapify(arr, size, largest);}
}void heapSort(std::vector<int>& arr) {int size = arr.size();for (int i = size / 2 - 1; i >= 0; i--) {maxHeapify(arr, size, i);}for (int i = size - 1; i > 0; i--) {std::swap(arr[0], arr[i]);maxHeapify(arr, i, 0);}
}int main() {std::vector<int> arr = {4, 10, 3, 5, 1};int size = arr.size();heapSort(arr);std::cout << "堆排序结果:";for (int num : arr) {std::cout << num << " ";}return 0;
}

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/149194.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【2023年11月第四版教材】第18章《项目绩效域》(合集篇)

第18章《项目绩效域》&#xff08;合集篇&#xff09; 1 章节内容2 干系人绩效域2.1 绩效要点2.2 执行效果检查2.3 与其他绩效域的相互作用 3 团队绩效域3.1 绩效要点3.2 与其他绩效域的相互作用3.3 执行效果检查3.4 开发方法和生命周期绩效域 4 绩效要点4.1 与其他绩效域的相互…

2023/10/4 QT实现TCP服务器客户端搭建

服务器端&#xff1a; 头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> #include <QTcpSocket> #include <QList> #include <QMessageBox> #include <QDebug>QT_BEGIN_NAMESPACE namespace Ui { cla…

十天学完基础数据结构-第八天(哈希表(Hash Table))

哈希表的基本概念 哈希表是一种数据结构&#xff0c;用于存储键值对。它的核心思想是将键通过哈希函数转化为索引&#xff0c;然后将值存储在该索引位置的数据结构中。 哈希函数的作用 哈希函数是哈希表的关键部分。它将输入&#xff08;键&#xff09;映射到哈希表的索引位…

Ubuntu使用cmake和vscode开发自己的项目,引用自己的头文件和openCV

创建文件夹 mkdir my_proj 继续创建include 和 src文件夹&#xff0c;形成如下的目录结构 用vscode打开项目 创建add.h #ifndef ADD_H #define ADD_Hint add(int numA, int numB);#endif add.cpp #include "add.h"int add(int numA, int numB) {return numA nu…

实战型开发2/3--架构设计

这里谈及在代码设计阶段以及重构阶段要考虑的架构方面问题&#xff0c;可以说是开发过程中的中层阶段&#xff1b; 主要是将 < the art of unix programming>< clean architecture>< the pragmatic programmer>< design patterns> 等几本书结合实践做…

[NSSRound#1 Basic]sql_by_sql - 二次注入+布尔盲注||sqlmap

进入注册界面后   假设sql&#xff1a;update user set password ‘’ where username ‘’ and password ‘’     此时如果我们注册的用户名是admin’–、admin’#、admin’–的话   update user set password ‘123’ where username ‘admin’#’ and passwor…

[架构之路-231]:计算机硬件与体系结构 - 性能评估汇总,性能优化加速比

目录 一、计算机体系结构 二、计算机性能评估 2.1 分类方法1 2.2 分类方法2 三、常见的专项性能测试工具 3.1 浮点运算性能&#xff08;FLOPS&#xff09; 3.2 综合理论性能法 3.3 历史基准测试&#xff08;跑分软件&#xff09;&#xff1a;通过运行典型的综合性的程序…

毕设-原创医疗预约挂号平台分享

医疗预约挂号平台 不是尚医通项目&#xff0c;先看项目质量&#xff08;有源码论文&#xff09; 项目链接&#xff1a;医疗预约挂号平台git地址 演示视频&#xff1a;医疗预约挂号平台 功能结构图 登录注册模块&#xff1a;该模块具体分为登录和注册两个功能&#xff0c;这些…

想要精通算法和SQL的成长之路 - 最长连续序列

想要精通算法和SQL的成长之路 - 最长连续序列 前言一. 最长连续序列1.1 并查集数据结构创建1.2 find 查找1.3 union 合并操作1.4 最终代码 前言 想要精通算法和SQL的成长之路 - 系列导航 并查集的运用 一. 最长连续序列 原题链接 这个题目&#xff0c;如何使用并查集是一个小难…

R语言教程课后习题答案(持续更新中~~)

R语言教程网址如下 https://www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/index.html 目录 source()函数可以运行保存在一个文本文件中的源程序 R向量下标和子集 数值型向量及其运算 日期功能 R因子类型 source()函数可以运行保存在一个文本文件中的源程序…

【C语言】动态通讯录(超详细)

通讯录是一个可以很好锻炼我们对结构体的使用&#xff0c;加深对结构体的理解&#xff0c;在为以后学习数据结构打下结实的基础 这里我们想设计一个有添加联系人&#xff0c;删除联系人&#xff0c;查找联系人&#xff0c;修改联系人&#xff0c;展示联系人&#xff0c;排序这几…

快速了解Spring Cache

SpringCache是一个框架&#xff0c;实现了基于注解的缓存功能&#xff0c;只需要简单的加一个注解&#xff0c;就可以实现缓存功能。 SpringCache提供了一层抽象&#xff0c;底层可以切换不同的缓存实现。例如&#xff1a; EHChche Redis Caffeine 常用注解&#xff1a; Enabl…

Vue中如何进行分布式路由配置与管理

Vue中的分布式路由配置与管理 随着现代Web应用程序的复杂性不断增加&#xff0c;分布式路由配置和管理成为了一个重要的主题。Vue.js作为一种流行的前端框架&#xff0c;提供了多种方法来管理Vue应用程序的路由。本文将深入探讨在Vue中如何进行分布式路由配置与管理&#xff0…

全志ARM926 Melis2.0系统的开发指引⑧

全志ARM926 Melis2.0系统的开发指引⑧ 编写目的12.5. 应用程序编写12.5.1. 简单应用编写12.5.1.1. 注册应用12.5.1.2. 创建管理窗口12.5.1.3. 实现管理窗口消息处理回调函数12.5.1.4. 创建图层12.5.1.5. 创建 framewin12.5.1.6. 实现 framewin 消息处理回调函数 -. 全志相关工具…

【BBC新闻文章分类】使用 TF 2.0和 LSTM 的文本分类

一、说明 NLP上的许多创新是如何将上下文添加到词向量中。常见的方法之一是使用递归神经网络

SSM-XML整合

SSM-XML整合 核心配置文件 maven坐标 <dependencies><!--数据库驱动--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.27</version></dependency><!--数据…

解决dockerfile创建镜像时pip install报错的bug

项目场景&#xff1a; 使用docker-compose创建django容器 问题描述 > [5/5] RUN /bin/bash -c source ~/.bashrc && python3 -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple: 0.954 Looking in indexes: https://…

Next.js 入门笔记

前言 之前初步体验了 React 的魅力, 又看文档理解了一下 useState 和 useEffect, 目前初步理解的概念是: useState 用来声明在组件中使用并且需要修改的变量 useEffect 用来对 useState 声明的变量进行初始化赋值 可能理解的不太准确, 不过大概差不多是这么个意思. 但是再往后…

1.3.OpenCV技能树--第一单元--图像的基础操作(基础篇)

文章目录 1.文章内容来源2.图像的基本操作2.1.图像加载2.2.图像显示2.3.数据读取2.4.截取图像2.5.颜色通道提取2.5.1.保留红色处理2.5.2.保留绿色处理2.5.3.保留蓝色处理 3.易错点总结与反思 1.文章内容来源 1.题目来源: 2.资料来源:https://edu.csdn.net/skill/opencv/opencv…

软技能继续挑战网络安全领域

根据 ISACA 的一份新报告&#xff0c;新的网络安全调查结果指出了网络安全专家缺乏的领域&#xff0c;其中人际技能、云计算和安全措施是网络安全专家最突出的技能缺陷。 59% 的网络安全领导者表示他们的团队人手不足。50% 的受访者表示有非入门级职位的职位空缺&#xff0c;而…