排序合集(一)

以下是更完善和人性化的版本,增加了一些细节和解释,同时让内容更易读:


一、直接插入排序 (Insertion Sort)

基本思想

直接插入排序是一种简单直观的排序算法,就像我们打扑克牌时的操作:每次摸到一张牌,都会把它插入到手中已排好序的牌的正确位置。通过这种方式,逐步构建一个有序序列。

步骤
  1. 从第一个元素开始,该元素可以认为已经被排序。

  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描。

  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置。

  4. 重复步骤3,直到找到已排序的元素小于或等于新元素的位置。

  5. 将新元素插入到该位置后。

  6. 重复步骤2~5,直到所有元素都被排序。

C语言代码示例
void InsertSort(int* a, int n) {for (int i = 1; i < n; i++) { // 从第二个元素开始int temp = a[i]; // 当前要插入的元素int j = i - 1;    // 从已排序部分的最后一个元素开始比较while (j >= 0 && a[j] > temp) {a[j + 1] = a[j]; // 如果当前元素大于新元素,向后移动j--;}a[j + 1] = temp; // 找到插入位置后,插入新元素}
}
算法分析
  • 时间复杂度

    • 最好情况(已排好序):O(n),每个元素只需比较一次。

    • 平均情况和最坏情况(逆序):O(n²)。

  • 空间复杂度:O(1),只需要一个临时变量。

  • 稳定性:稳定。相等元素的相对位置不会改变。

  • 适用场景:适用于小型数据集或基本有序的数据集,效率较高。


二、冒泡排序 (Bubble Sort)

基本思想

冒泡排序是一种简单但效率较低的排序算法。它的名字来源于其工作方式:通过重复遍历待排序的数列,比较相邻的两个元素,如果顺序错误就交换它们。每次遍历后,最大的元素会像气泡一样“浮”到数列的末尾。

步骤
  1. 比较相邻的元素。如果第一个比第二个大,就交换它们。

  2. 对每一对相邻元素做同样的操作,从第一个元素到最后一个元素。经过这一轮后,最大的元素会移动到数列的末尾。

  3. 重复上述步骤,但每次减少比较的范围,因为最后的元素已经排好序。

  4. 继续重复,直到整个数列有序。

C语言代码示例
void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) { // 遍历 n-1 次for (int j = 0; j < n - i - 1; j++) { // 每次减少比较范围if (arr[j] > arr[j + 1]) { // 如果顺序错误,交换int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}
}
算法分析
  • 时间复杂度

    • 最好情况(已排好序):O(n),因为只需要遍历一次。

    • 平均情况和最坏情况(逆序):O(n²)。

  • 空间复杂度:O(1),只需要一个临时变量。

  • 稳定性:稳定。相等元素的相对位置不会改变。

  • 适用场景:由于效率较低,通常只用于教学示例,不适合实际应用。


三、希尔排序 (Shell Sort)

基本思想

希尔排序是插入排序的一种改进版本,通过引入“增量”来分组排序,减少数据的移动次数。它将待排序的元素分成若干组,每组内的元素间距为某个增量,然后对每组进行插入排序。随着增量逐渐减小,最终增量为1时,整个序列基本有序,此时再进行一次直接插入排序即可完成。

步骤
  1. 选择一个增量序列,例如 [n/2, n/4, ..., 1]

  2. 按增量序列的个数进行多趟排序。

  3. 每趟排序中,根据当前增量将序列分成若干子序列,对每个子序列进行插入排序。

  4. 增量逐步减小,直到增量为1,完成排序。

C语言代码示例
void shellSort(int arr[], int n) {for (int gap = n / 2; gap > 0; gap /= 2) { // 增量逐步减小for (int i = gap; i < n; i++) { // 对每个子序列进行插入排序int temp = arr[i];int j = i;while (j >= gap && arr[j - gap] > temp) {arr[j] = arr[j - gap];j -= gap;}arr[j] = temp;}}
}
算法分析
  • 时间复杂度

    • 最好情况:O(n log n)。

    • 平均情况:取决于增量序列,通常在 O(n log² n) 到 O(n^(3/2)) 之间。

    • 最坏情况:O(n²)。

  • 空间复杂度:O(1)。

  • 稳定性:不稳定。由于分组排序,可能会破坏元素的相对顺序。

  • 适用场景:适用于中等规模的数据集,性能优于简单排序算法。


四、选择排序 (Selection Sort)

基本思想

选择排序是一种简单直观的排序算法。它的核心思想是:每次从未排序的部分中找到最小(或最大)的元素,放到已排序部分的末尾。通过逐步缩小未排序部分的范围,最终完成排序。

步骤
  1. 在未排序的序列中找到最小元素。

  2. 将最小元素与未排序部分的第一个元素交换。

  3. 将已排序部分的边界向后移动一位。

  4. 重复上述步骤,直到所有元素都被排序。

C语言代码示例
void selectionSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) { // 遍历 n-1 次int min_idx = i; // 假设当前元素为最小值for (int j = i + 1; j < n; j++) { // 找到未排序部分的最小值if (arr[j] < arr[min_idx]) {min_idx = j;}}// 交换最小值与当前元素int temp = arr[min_idx];arr[min_idx] = arr[i];arr[i] = temp;}
}
算法分析
  • 时间复杂度

    • 最好、平均和最坏情况:O(n²)。

  • 空间复杂度:O(1)。

  • 稳定性:不稳定。交换操作可能会破坏相等元素的相对顺序。

  • 适用场景:实现简单,适合小型数据集或教学示例。


五、堆排序 (Heap Sort)

基本思想

堆排序是一种基于堆数据结构的排序算法。堆是一种特殊的完全二叉树,分为大顶堆和小顶堆。堆排序利用堆的性质,快速找到最大或最小元素,并逐步构建有序序列。

步骤
  1. 将待排序的序列构建成一个大顶堆(升序排序)或小顶堆(降序排序)。

  2. 将堆顶元素(最大值或最小值)与末尾元素交换。

  3. 将剩余的元素重新调整为堆。

  4. 重复上述步骤,直到所有元素都被排序。

C语言代码示例
void heapify(int arr[], int n, int i) {int largest = i; // 假设当前节点为最大值int left = 2 * i + 1; // 左子节点int right = 2 * i + 2; // 右子节点if (left < n && arr[left] > arr[largest]) {largest = left; // 如果左子节点更大}if (right < n && arr[right] > arr[largest]) {largest = right; // 如果右子节点更大}if (largest != i) {// 交换当前节点与最大值节点int temp = arr[i];arr[i] = arr[largest];arr[largest] = temp;// 递归调整子树heapify(arr, n, largest);}
}void heapSort(int arr[], int n) {// 构建大顶堆for (int i = n / 2 - 1; i >= 0; i--) {heapify(arr, n, i);}// 逐步提取堆顶元素for (int i = n - 1; i >= 0; i--) {// 交换堆顶元素与末尾元素int temp = arr[0];arr[0] = arr[i];arr[i] = temp;// 调整剩余元素为堆heapify(arr, i, 0);}
}
算法分析
  • 时间复杂度

    • 最好、平均和最坏情况:O(n log n)。

  • 空间复杂度:O(1)。

  • 稳定性:不稳定。交换操作可能会破坏相等元素的相对顺序。

  • 适用场景:适合大数据量的排序,性能稳定。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15050.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# OpenCvSharp 部署MOWA:多合一图像扭曲模型

目录 说明 效果 项目 代码 下载 参考 C# OpenCvSharp 部署MOWA&#xff1a;多合一图像扭曲模型 说明 算法模型的paper名称是《MOWA: Multiple-in-One Image Warping Model》 ariv链接 https://arxiv.org/pdf/2404.10716 效果 Stitched Image 翻译成中文意思是&…

【Java】线上故障排查实战

引言 JVM命令详细可以看前一篇文章&#xff0c;本篇文章基于之前的命令做一次简单的线上故障排查分析 JVM常见命令 实战 1. 一般显示都是Linux系统&#xff0c;我们排查winodows系统想知道CPU和内存使用情况&#xff0c;打开任务管理器就可以出现图形化界面&#xff0c;而L…

编译spring 6.2.2

如何编译Spring 6.2.2 下载spring 6.2.2 首先&#xff0c;下载spring 6.2.2&#xff0c;地址&#xff1a;下载 解压到你的目录下。 下载gradle 下载gradle&#xff0c;这是spring项目的依赖管理工具&#xff0c;本文下载的是8.12.1 gradle下载 下载合适的JDK 本文下载的是…

深度求索(DeepSeek)的AI革命:NLP、CV与智能应用的技术跃迁

Deepseek官网&#xff1a;DeepSeek 引言&#xff1a;AI技术浪潮中的深度求索 近年来&#xff0c;人工智能技术以指数级速度重塑全球产业格局。在这场技术革命中&#xff0c;深度求索&#xff08;DeepSeek&#xff09;凭借其前沿的算法研究、高效的工程化能力以及对垂直场景的…

Android Studio超级详细讲解下载、安装配置教程(建议收藏)

博主介绍&#xff1a;✌专注于前后端、机器学习、人工智能应用领域开发的优质创作者、秉着互联网精神开源贡献精神&#xff0c;答疑解惑、坚持优质作品共享。本人是掘金/腾讯云/阿里云等平台优质作者、擅长前后端项目开发和毕业项目实战&#xff0c;深受全网粉丝喜爱与支持✌有…

计算机毕业设计Python+Vue.js游戏推荐系统 Steam游戏推荐系统 Django Flask 游 戏可视化 游戏数据分析 游戏大数据 爬虫

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

版本更新|OpenCSG AutoHub v0.2.8

AutoHub v0.2.8现已发布&#xff01; AutoHub v0.2.8本次更新致力于提升用户体验、增强系统的兼容性和流畅性。通过优化单页应用的支持、提示语推荐功能以及新增页面跳转支持&#xff0c;用户在执行工作流时能够更加高效、便捷。同时&#xff0c;针对界面的多项优化&#xff0…

DeepSeek-R1模型的数学原理(说人话)

文章目录 1、什么是GRPO2、数学原理3、比喻4、流程总结 &#x1f343;作者介绍&#xff1a;双非本科大四网络工程专业在读&#xff0c;阿里云专家博主&#xff0c;前三年专注于Java领域学习&#xff0c;擅长web应用开发&#xff0c;目前已转行人工智能领域。 &#x1f985;个人…

智慧停车场解决方案(文末联系,领取整套资料,可做论文)

一、方案概述 本智慧停车场解决方案旨在通过硬件设备与软件系统的深度整合&#xff0c;实现停车场的智能化管理与服务&#xff0c;提升车主的停车体验&#xff0c;优化停车场运营效率。 二、硬件架构 硬件设备说明&#xff1a; 车牌识别摄像机&#xff1a;安装在停车场入口和…

对“云原生”的初印象

一、背景 最近因为在工作中以及一些技术博客中听的比较火的一个关键词 "云原生"&#xff0c;于是产生了好奇&#xff0c;云原生到底是什么东西&#xff1f;自己对云原生也是一个纯小白&#xff0c;于是带着这个问题去好好了解一下&#xff0c;什么是"云原生&qu…

物联网软件开发与应用方向应该怎样学习,学习哪些内容,就业方向是怎样?(文末领取整套学习视频,课件)物联网硬件开发与嵌入式系统

随着物联网技术的飞速发展&#xff0c;物联网软件开发与应用方向成为了众多开发者关注的焦点。那么&#xff0c;如何在这个领域中脱颖而出呢&#xff1f;本文将为你提供一份详细的学习指南&#xff0c;帮助你从零开始&#xff0c;逐步掌握物联网软件开发与应用的核心技能。 一…

数据结构-基础

1、概念&#xff1a; 程序 数据结构 算法 2、程序的好坏 可读性&#xff0c;稳定性&#xff0c;扩展性&#xff0c;时间复杂度&#xff0c;空间复杂度。 3、数据结构 是指存储、组织数据的方式&#xff0c;以便高效地进行访问和修改。通过选择适当的数据结构&#xff0c; 能…

蓝耘智算平台与DeepSeek R1模型:推动深度学习发展

公主请阅 前言何为DeepSeek R1DeepSeek R1 的特点DeepSeek R1 的应用领域DeepSeek R1 与其他模型的对比 何为蓝耘智算平台使用蓝耘智算平台深度使用DeepSeek R1代码解释&#xff1a;处理示例输入&#xff1a;输出结果&#xff1a; 前言 在深度学习领域&#xff0c;创新迭代日新…

神经网络(Neural Network)

引言 神经网络,作为人工智能和机器学习领域的核心组成部分,近年来在诸多领域取得了显著的进展。受生物神经系统的启发,神经网络通过模拟人脑神经元的工作机制,能够从大量数据中学习复杂的模式和关系。其强大的非线性建模能力使其在图像识别、自然语言处理、语音识别和预测…

基于python多线程多进程爬虫的maa作业站技能使用分析

基于python多线程多进程爬虫的maa作业站技能使用分析 技能使用分析 多线程&#xff08;8核&#xff09; import json import multiprocessing import requests from multiprocessing.dummy import Pooldef maa(st):url "https://prts.maa.plus/copilot/get/"m …

npm无法加载文件 因为此系统禁止运行脚本

安装nodejs后遇到问题&#xff1a; 在项目里【node -v】可以打印出来&#xff0c;【npm -v】打印不出来&#xff0c;显示npm无法加载文件 因为此系统禁止运行脚本。 但是在winr&#xff0c;cmd里【node -v】,【npm -v】都也可打印出来。 解决方法&#xff1a; cmd里可以打印出…

2.9寒假作业

web&#xff1a;[SWPUCTF 2022 新生赛]ez_ez_php(revenge) 打开环境&#xff0c;进行代码审计 下面有提示访问游戏flag.php&#xff0c;尝试看看 提示了正确的flag&#xff0c;还有要使用为协议&#xff0c;之前也了解过&#xff0c;关于执行包含文件例如include可使用为协议绕…

【Matlab优化算法-第13期】基于多目标优化算法的水库流量调度

一、前言 水库流量优化是水资源管理中的一个重要环节&#xff0c;通过合理调度水库流量&#xff0c;可以有效平衡防洪、发电和水资源利用等多方面的需求。本文将介绍一个水库流量优化模型&#xff0c;包括其约束条件、目标函数以及应用场景。 二、模型概述 水库流量优化模型…

Mybatis

入门 配置SQL提示 JDBC介绍 JDBC:(Java DataBase Connectivity)&#xff0c;就是使用Java语言操作关系型数据库的一套API 本质 sun公司官方定义的一套操作所有关系型数据库的规范&#xff0c;即接口 各个数据库厂商去实现这套接口&#xff0c;提供数据库驱动jar包 我们可以使…

Deepseek的MLA技术原理介绍

DeepSeek的MLA(Multi-head Latent Attention)技术是一种创新的注意力机制,旨在优化Transformer模型的计算效率和内存使用,同时保持模型性能。以下是MLA技术的详细原理和特点: 1. 核心思想 MLA技术通过低秩联合压缩技术,将多个注意力头的键(Key)和值(Value)映射到一…