AdaBoost(上):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬、关注🤝,关注必回关

上一篇文章已经跟大家介绍过《PageRank(下):数据分析 | 数据挖掘 | 十大算法之一》,相信大家对PageRank(下)都有一个基本的认识。下面我讲一下,AdaBoost(上):数据分析 | 数据挖掘 | 十大算法之一

一、AdaBoost背景

在数据挖掘中,分类算法可以说是核心算法,其中 AdaBoost 算法与随机森林算法一样都属于分类算法中的集成算法。

集成的含义就是集思广益,博取众长,当我们做决定的时候,我们先听取多个专家的意见,再做决定。集成算法通常有两种方式,分别是投票选举(bagging)和再学习(boosting)。投票选举的场景类似把专家召集到一个会议桌前,当做一个决定的时候,让 K 个专家(K 个模型)分别进行分类,然后选择出现次数最多的那个类作为最终的分类结果。再学习相当于把 K 个专家(K 个分类器)进行加权融合,形成一个新的超级专家(强分类器),让这个超级专家做判断。

所以你能看出来,投票选举和再学习还是有区别的。Boosting 的含义是提升,它的作用是每一次训练的时候都对上一次的训练进行改进提升,在训练的过程中这 K 个“专家”之间是有依赖性的,当引入第 K 个“专家”(第 K 个分类器)的时候,实际上是对前 K-1 个专家的优化。而 bagging 在做投票选举的时候可以并行计算,也就是 K 个“专家”在做判断的时候是相互独立的,不存在依赖性。

二、AdaBoost 的工作原理

了解了集成算法的两种模式之后,我们来看下今天要讲的 AdaBoost 算法。

AdaBoost 的英文全称是 Adaptive Boosting,中文含义是自适应提升算法。它由 Freund 等人于 1995 年提出,是对 Boosting 算法的一种实现。

什么是 Boosting 算法呢?Boosting 算法是集成算法中的一种,同时也是一类算法的总称。这类算法通过训练多个弱分类器,将它们组合成一个强分类器,也就是我们俗话说的“三个臭皮匠,顶个诸葛亮”。为什么要这么做呢?因为臭皮匠好训练,诸葛亮却不好求。因此要打造一个诸葛亮,最好的方式就是训练多个臭皮匠,然后让这些臭皮匠组合起来,这样往往可以得到很好的效果。这就是 Boosting 算法的原理。

我可以用上面的图来表示最终得到的强分类器,你能看出它是通过一系列的弱分类器根据不同的权重组合而成的。

假设弱分类器为 Gi​(x),它在强分类器中的权重 αi​,那么就可以得出强分类器 f(x):

有了这个公式,为了求解强分类器,你会关注两个问题:

  1. 如何得到弱分类器,也就是在每次迭代训练的过程中,如何得到最优弱分类器?
  2. 每个弱分类器在强分类器中的权重是如何计算的?

我们先来看下第二个问题。实际上在一个由 K 个弱分类器中组成的强分类器中,如果弱分类器的分类效果好,那么权重应该比较大,如果弱分类器的分类效果一般,权重应该降低。所以我们需要基于这个弱分类器对样本的分类错误率来决定它的权重,用公式表示就是:

其中 ei​ 代表第 i 个分类器的分类错误率。

然后我们再来看下第一个问题,如何在每次训练迭代的过程中选择最优的弱分类器?

实际上,AdaBoost 算法是通过改变样本的数据分布来实现的。AdaBoost 会判断每次训练的样本是否正确分类,对于正确分类的样本,降低它的权重,对于被错误分类的样本,增加它的权重。再基于上一次得到的分类准确率,来确定这次训练样本中每个样本的权重。然后将修改过权重的新数据集传递给下一层的分类器进行训练。这样做的好处就是,通过每一轮训练样本的动态权重,可以让训练的焦点集中到难分类的样本上,最终得到的弱分类器的组合更容易得到更高的分类准确率。

我们可以用 Dk+1​ 代表第 k+1 轮训练中,样本的权重集合,其中 Wk+1,1​ 代表第 k+1 轮中第一个样本的权重,以此类推 Wk+1,N​ 代表第 k+1 轮中第 N 个样本的权重,因此用公式表示为:

第 k+1 轮中的样本权重,是根据该样本在第 k 轮的权重以及第 k 个分类器的准确率而定,具体的公式为:

三、AdaBoost 算法示例

了解 AdaBoost 的工作原理之后,我们看一个例子,假设我有 10 个训练样本,如下所示:

现在我希望通过 AdaBoost 构建一个强分类器。

该怎么做呢?按照上面的 AdaBoost 工作原理,我们来模拟一下。

首先在第一轮训练中,我们得到 10 个样本的权重为 1/10,即初始的 10 个样本权重一致,D1=(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)。

假设我有 3 个基础分类器:

我们可以知道分类器 f1 的错误率为 0.3,也就是 x 取值 6、7、8 时分类错误;分类器 f2 的错误率为 0.4,即 x 取值 0、1、2、9 时分类错误;分类器 f3 的错误率为 0.3,即 x 取值为 3、4、5 时分类错误。

这 3 个分类器中,f1、f3 分类器的错误率最低,因此我们选择 f1 或 f3 作为最优分类器,假设我们选 f1 分类器作为最优分类器,即第一轮训练得到:

根据分类器权重公式得到:

然后我们对下一轮的样本更新求权重值,代入 Wk+1,i​ 和 Dk+1​ 的公式,可以得到新的权重矩阵:D2=(0.0715, 0.0715, 0.0715, 0.0715, 0.0715, 0.0715, 0.1666, 0.1666, 0.1666, 0.0715)。

在第二轮训练中,我们继续统计三个分类器的准确率,可以得到分类器 f1 的错误率为 0.1666*3,也就是 x 取值为 6、7、8 时分类错误。分类器 f2 的错误率为 0.0715*4,即 x 取值为 0、1、2、9 时分类错误。分类器 f3 的错误率为 0.0715*3,即 x 取值 3、4、5 时分类错误。

在这 3 个分类器中,f3 分类器的错误率最低,因此我们选择 f3 作为第二轮训练的最优分类器,即:

根据分类器权重公式得到:

同样,我们对下一轮的样本更新求权重值,代入 Wk+1,i​ 和 Dk+1​ 的公式,可以得到 D3=(0.0455,0.0455,0.0455,0.1667, 0.1667,0.01667,0.1060, 0.1060, 0.1060, 0.0455)。

在第三轮训练中,我们继续统计三个分类器的准确率,可以得到分类器 f1 的错误率为 0.1060*3,也就是 x 取值 6、7、8 时分类错误。分类器 f2 的错误率为 0.0455*4,即 x 取值为 0、1、2、9 时分类错误。分类器 f3 的错误率为 0.1667*3,即 x 取值 3、4、5 时分类错误。

在这 3 个分类器中,f2 分类器的错误率最低,因此我们选择 f2 作为第三轮训练的最优分类器,即:

我们根据分类器权重公式得到:

假设我们只进行 3 轮的训练,选择 3 个弱分类器,组合成一个强分类器,那么最终的强分类器 G(x) = 0.4236G1(x) + 0.6496G2(x)+0.7514G3(x)。

实际上 AdaBoost 算法是一个框架,你可以指定任意的分类器,通常我们可以采用 CART 分类器作为弱分类器。通过上面这个示例的运算,你体会一下 AdaBoost 的计算流程即可。

四、总结

今天我给你讲了 AdaBoost 算法的原理,你可以把它理解为一种集成算法,通过训练不同的弱分类器,将这些弱分类器集成起来形成一个强分类器。在每一轮的训练中都会加入一个新的弱分类器,直到达到足够低的错误率或者达到指定的最大迭代次数为止。实际上每一次迭代都会引入一个新的弱分类器(这个分类器是每一次迭代中计算出来的,是新的分类器,不是事先准备好的)。

在弱分类器的集合中,你不必担心弱分类器太弱了。实际上它只需要比随机猜测的效果略好一些即可。如果随机猜测的准确率是 50% 的话,那么每个弱分类器的准确率只要大于 50% 就可用。AdaBoost 的强大在于迭代训练的机制,这样通过 K 个“臭皮匠”的组合也可以得到一个“诸葛亮”(强分类器)。

当然在每一轮的训练中,我们都需要从众多“臭皮匠”中选择一个拔尖的,也就是这一轮训练评比中的最优“臭皮匠”,对应的就是错误率最低的分类器。当然每一轮的样本的权重都会发生变化,这样做的目的是为了让之前错误分类的样本得到更多概率的重复训练机会。

同样的原理在我们的学习生活中也经常出现,比如善于利用错题本来提升学习效率和学习成绩。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/150612.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

特殊笔记_10/7

安装node到第4.1就行(安装npm的淘宝镜像) Node.js安装与配置(详细步骤)_nodejs安装及环境配置_LI4836的博客-CSDN博客 安装vscode 下载组件: 点击第五个 Auto Close Tag:自动闭合标签 Chinese (Simpli…

MQ - 36 云原生:业界MQ的计算存储分离的设计与实现

文章目录 导图概述什么是存算分离架构必须是存算分离架构吗实现存算分离架构的技术思考如何选择合适的存储层引擎存储层:分区存储模型的设计计算层:弹性无状态的写入业界主流存算分离架构分析RocketMQ 5.0 架构分析Pulsar 存算架构分析总结导图 概述 结合云原生、Serverless…

JetBrains ToolBox修改应用安装位置

TooBox修改应用安装位置 1.关闭ToolBox 2.修改配置文件 找到配置文件所在位置 C:\Users\用户名\AppData\Local\JetBrains\Toolbox\.settings.json增加install_location字段 "install_location": "E:\\DevTool\\IDE",E:\DevTool\IDE可以改成自己想要的…

Springboot项目log4j与logback的Jar包冲突问题

异常信息关键词: SLF4J: Class path contains multiple SLF4J bindings. ERROR in ch.qos.logback.core.joran.spi.Interpreter24:14 - no applicable action for [properties], current ElementPath is [[configuration][properties]] 详细异常信息&#xff1a…

常见排序算法详解

目录 排序的相关概念 排序: 稳定性: 内部排序: 外部排序: 常见的排序: 常见排序算法的实现 插入排序: 基本思想: 直…

自学接口测试系列 —— 自动化测试用例设计基础!

一、接口测试思路总结 ❓首先我们在进行接口测试设计前思考一个问题:接口测试,测试的是什么? ❗我们必须要知道,接口测试的本质:是根据接口的参数,设计输入数据,验证接口的返回值。 那么接口…

day24-JS进阶(构造函数,new实例化,原型对象,对象原型,原型继承,原型链)

目录 构造函数 深入对象 创建对象三种方式 构造函数 new实例化执行过程(important!) 实例成员&静态成员 实例对象&实例成员 静态成员 内置构造函数 基本包装类型 Object Object.keys(obj)返回所有键组成的字符串数组 Object.values(obj)返回所有值组成的字…

Nginx支持SNI证书,已经ssl_server_name的使用

整理了一些网上的资料,这里记录一下,供大家参考 什么是SNI? 传统的应用场景中,一台服务器对应一个IP地址,一个域名,使用一张包含了域名信息的证书。随着云计算技术的普及,在云中的虚拟机有了一…

RPC分布式网络通信框架项目

文章目录 对比单机聊天服务器、集群聊天服务器以及分布式聊天服务器RPC通信原理使用Protobuf做数据的序列化,相比较于json,有哪些优点?环境配置使用项目代码工程目录vscode远程开发Linux项目muduo网络库编程示例CMake构建项目集成编译环境Lin…

在Android中实现动态应用图标

在Android中实现动态应用图标 你可能已经遇到过那些能够完成一个神奇的技巧的应用程序——在你的生日时改变他们的应用图标,然后无缝切换回常规图标。这是一种引发你好奇心的功能,让你想知道,“他们到底是如何做到的?”。嗯&…

HTML 笔记 表格

1 表格基本语法 tr:table row th:table head 2 表格属性 2.1 基本属性 表格的基本属性是指表格的行、列和单元格但并不是每个表格的单元格大小都是统一的,所以需要设计者通过一些属性参数来修改表格的样子,让它们可以更更多样…

VR全景展示带来旅游新体验,助力旅游业发展!

引言: VR(虚拟现实)技术正以惊人的速度改变着各行各业,在旅游业中,VR全景展示也展现了其惊人的影响力,为景区带来了全新的宣传机会和游客体验。 一.什么是VR全景展示? VR全景展示是…

华硕平板k013me176cx线刷方法

1.下载adb刷机工具, 或者刷机精灵 2.下载刷机rom包 华硕asus k013 me176cx rom固件刷机包-CSDN博客 3.平板进入刷机界面 进入方法参考: ASUS (k013) ME176CX不进入系统恢复出厂设置的方法-CSDN博客 4.解压ME176C-CN-3_2_23_182.zip,把UL-K013-CN-3.2.…

软件测试面试之问——角色扮演

作为软件测试工程师,在求职面试中经常会被问到这样一个问题:你认为测试工程师在企业中扮演着什么样的角色呢? 某度百科是这样概括的:“软件测试工程师在一家软件企业中担当的是‘质量管理’角色,及时发现软件问题并及…

2.5 数字传输系统

笔记: 针对这一节的内容,我为您提供一个笔记的整理方法。将内容按重要性、逻辑关系进行组织,再进行简化。 ## 2.5 数字传输系统 ### 背景介绍: 1. **早期电话网**:市话局到用户采用双绞线电缆,长途干线采…

css的gap设置元素之间的间隔

在felx布局中可以使用gap来设置元素之间的间隔&#xff1b; .box{width: 800px;height: auto;border: 1px solid green;display: flex;flex-wrap: wrap;gap: 100px; } .inner{width: 200px;height: 200px;background-color: skyblue; } <div class"box"><…

【Unity】RenderFeature笔记

【Unity】RenderFeature笔记 RenderFeature是在urp中添加的额外渲染pass&#xff0c;并可以将这个pass插入到渲染列队中的任意位置。内置渲染管线中Graphics 的功能需要在RenderFeature里实现,常见的如DrawMesh和Blit ​ 可以实现的效果包括但不限于 后处理&#xff0c;可以编写…

访问控制、RBAC和ABAC模型

访问控制、RBAC和ABAC模型 访问控制 访问控制的目的是保护对象&#xff08;数据、服务、可执行应用该程序、网络设备或其他类型的信息技术&#xff09;不受未经授权的操作的影响。操作包括&#xff1a;发现、读取、创建、编辑、删除和执行等。 为实现访问控制&#xff0c; 计…

JavaScript系列从入门到精通系列第十六篇:JavaScript使用函数作为属性以及枚举对象中的属性

文章目录 前言 1&#xff1a;对象属性可以是函数 2&#xff1a;对象属性函数被称为方法 一&#xff1a;枚举对象中的属性 1&#xff1a;for...in 枚举对象中的属性 前言 1&#xff1a;对象属性可以是函数 对象的属性值可以是任何的数据类型&#xff0c;也可以是函数。 v…

linux系统中常见注册函数的使用方法

大家好&#xff0c;今天给大家分享一下&#xff0c;linux系统中常见的注册函数register_chrdev_region()、register_chrdev()、 alloc_chrdev_region()的使用方法​。 一、函数包含的头文件&#xff1a; 分配设备编号&#xff0c;注册设备与注销设备的函数均在fs.h中申明&…