ChunkKV:优化 KV 缓存压缩,让 LLM 长文本推理更高效

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

在长文本推理中,大型语言模型(LLM)需要存储大量的 KV 缓存,这对 GPU 内存占用带来了极大挑战。传统的 KV 缓存压缩方法往往通过注意力分数筛选出“重要”Token,并裁剪掉相对不重要的部分。然而,这些方法通常单独评估每个 Token,忽视了Token 之间的依赖关系。结果就是,某些关键主题词被保留,但与之相关的重要上下文信息却可能被删减,导致模型语义理解出现偏差。因此,一种更结构化的 KV 缓存压缩方法迫在眉睫,它不仅要考虑Token 重要性,还要兼顾语义完整性

近年来,一些动态 KV 缓存压缩策略被提出,以优化内存使用的同时维持模型性能。例如,H2O 和 SnapKV 通过注意力机制筛选关键 Token,而Chunking(文本分块) 方法则将文本划分为语义相关的段落,以确保上下文连贯性。这种分块技术在 NLP 预训练和检索任务中早已广泛应用。此外,还有像 LISA 和 DoLa 这样的分层策略,利用 Transformer 不同层的结构信息提升模型效率。然而,在 KV 缓存压缩中引入 Token 依赖意识,依然是提升长文本推理能力的关键。

ChunkKV:按块存储,提升 KV 缓存效率

香港大学的研究团队推出了ChunkKV,一种全新的 KV 缓存压缩方法,与传统方法不同的是,它不再单独评估 Token,而是将 Token 组织成“语义块”进行处理。通过按块存储,ChunkKV 减少了内存占用,同时确保语义信息的完整性。除此之外,该方法还引入分层索引复用(Layer-wise Index Reuse) 技术,在不同层间共享已压缩的索引,进一步提升计算效率。

在多个基准测试(如 LongBench、Needle-In-A-Haystack、GSM8K 和 JailbreakV)上的实验表明,ChunkKV 在高压缩率下仍能将模型准确率提高 10%,相比传统方法,它在保留上下文信息提升内存效率方面表现更优,被认为是当前长文本推理的最优解决方案之一

ChunkKV 如何优化 GPU 内存?

随着 LLM 支持的文本长度不断增加,KV 缓存的内存占用已经成为推理效率的核心瓶颈。ChunkKV 通过分块存储语义丰富的 Token 组,减少存储需求的同时,仍能保留关键信息。具体来说,它利用注意力分数,筛选出最具信息量的 Token 组,并使用分层索引复用 技术,提高跨层的计算效率。

实验数据显示,与 SnapKV 等现有方法相比,ChunkKV 在层间索引相似度上表现更优,确保了更稳定的语义保留。这一结构化 KV 缓存方法符合 LLM 的上下文学习机制,在优化内存使用的同时,保证了长文本推理的连贯性。

实验结果:ChunkKV 是否真的好用?

研究团队在两大关键任务上评估了 ChunkKV 的有效性:

  1. 上下文学习(ICL,In-Context Learning):在 GSM8K、Many-Shot GSM8K 和 JailbreakV 基准测试中,ChunkKV 结合 LLaMA-3.1-8B-Instruct 和 DeepSeek-R1-Distill-Llama-8B 等模型,在不同压缩率下都保持了更高的准确率
  2. 长文本任务(Long-Context Tasks):在 LongBench 和 Needle-In-A-Haystack(NIAH) 数据集上的实验显示,ChunkKV 比现有方法更擅长保留关键信息

此外,索引复用实验 进一步验证了 ChunkKV 的效率提升。在 A40 GPU 上,该方法减少了 20.7% 的推理延迟,并提升了 26.5% 的吞吐量,证明其在计算资源受限环境下的可行性。

ChunkKV 的最优参数:Chunk Size 的影响

研究还分析了不同 Chunk Size 对 ChunkKV 性能的影响,结果表明:

  • Chunk Size 在 10-20 之间时表现最佳,能够平衡语义保留压缩效率
  • LongBench 和 NIAH 任务上的进一步测试确认,Chunk Size 设定为 10 时,能达到最优性能

总结:ChunkKV 是 LLM 长文本推理的高效解决方案

ChunkKV 显著降低了 KV 缓存的内存占用,同时保持了上下文完整性。通过按块存储 Token 并复用分层索引,它优化了计算效率,在多个任务上均超越了现有 KV 缓存压缩方法

研究结果表明,ChunkKV 不仅减少了 GPU 内存占用,还在保证准确率的前提下,提高了推理速度和吞吐量,成为 LLM 长文本推理的高效 KV 缓存压缩方案。未来,随着 LLM 文本上下文长度的进一步增长,ChunkKV 的应用前景将更加广阔。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15103.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA编写SpringBoot项目时使用Lombok报错“找不到符号”的原因和解决

目录 概述|背景 报错解析 解决方法 IDEA配置解决 Pom配置插件解决 概述|背景 报错发生背景:在SpringBoot项目中引入Lombok依赖并使用后出现"找不到符号"的问题。 本文讨论在上述背景下发生的报错原因和解决办法,如果仅为了解决BUG不论原…

【Redis】redis 存储的列表如何分页和检索

博主介绍:✌全网粉丝22W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…

基于SpringBoot的线上历史馆藏管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…

Redis持久化机制详解

为什么需要持久化 Redis通常被作为缓存使用,但是Redis一旦宕机,内存中的数据全部丢失,可能会导致数据库崩溃。如果是从数据库中恢复这些数据就会存在频繁访问数据库和读取速度慢的问题。所以redis实现数据的持久化,是至关重要的。…

代码随想录算法训练营day38

代码随想录算法训练营 —day38 文章目录 代码随想录算法训练营前言一、322. 零钱兑换二维dp数组 二、279.完全平方数二维dp数组 三、139. 单词拆分多重背包背包问题总结问题类型递推公式遍历顺序 前言 今天是算法营的第38天,希望自己能够坚持下来! 今日…

数据库高安全—审计追踪:传统审计统一审计

书接上文数据库高安全—角色权限:权限管理&权限检查,从权限管理和权限检查方面解读了高斯数据库的角色权限,本篇将从传统审计和统一审计两方面对高斯数据库的审计追踪技术进行解读。 4 审计追踪 4.1 传统审计 审计内容的记录方式通…

【C++篇】 异常处理

目录 1,异常的概念及使用 1.1,异常的概念 1.2,异常的抛出和捕获 1.3,栈展开 1.4,异常的重新抛出 1.5,异常安全问题 1.6,异常规范 2,标准库中的异常 小结: 1&…

QT修仙之路1-1--遇见QT

文章目录 遇见QT二、QT概述2.1 定义与功能2.2 跨平台特性2.3 优点汇总 三、软件安装四、QT工具介绍(重要)4.1 Assistant4.2 Designer4.3 uic.exe4.4 moc.exe4.5 rcc.exe4.6 qmake4.7 QTcreater 五、QT工程项目解析(作业)5.1 配置文件(.pro)5.2 头文件&am…

python实现情绪识别模块,并将模块封装成可执行文件

目录: 1.源码:2.情绪识别模型运行流程:3.模型封装需要注意的地方:4.未解决问题: 1.源码: https://gitcode.com/xyint/deep_learning.git 2.情绪识别模型运行流程: 需要获取用户摄像头权限&…

网络防御高级02-综合实验

web页面: [FW]interface GigabitEthernet 0/0/0 [FW-GigabitEthernet0/0/0]service-manage all permit 需求一,接口配置: SW2: [Huawei]sysname SW2 1.创建vlan [sw2]vlan 10 [sw2]vlan 20 2.接口配置 [sw2]interface GigabitEther…

Arbess基础教程-创建流水线

Arbess(谐音阿尔卑斯) 是一款开源免费的 CI/CD 工具,本文将介绍如何使用 Arbess 配置你的第一条流水线,以快速入门上手。 1. 创建流水线 根据不同需求来创建不同的流水线。 1.1 配置基本信息 配置流水线的基本信息,如分组,环境&…

MySQL下载过程

MySQL Enterprise Edition Downloads | Oracle mysql官方下载网址(9.2版本) 下面的示例是5.7的包,过程是一样的 port:3308(默认的是3306,笔者下了一个占用了该端口) root:123456 问题…

StochSync:可在任意空间中生成360°全景图和3D网格纹理

StochSync方法可以用于在任意空间中生成图像,尤其是360全景图和3D网格纹理。该方法利用了预训练的图像扩散模型,以实现零-shot生成,消除了对新数据收集和单独训练生成模型的需求。StochSync 结合了 Diffusion Synchronization(DS&…

Windows逆向工程入门之汇编环境搭建

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 Visual Studio逆向工程配置 基础环境搭建 Visual Studio 官方下载地址安装配置选项(后期可随时通过VS调整) 使用C的桌面开发 拓展可选选项 MASM汇编框架 配置MASM汇编项目 创建新项目 选择空…

【多模态大模型】系列1:CLIP【多模态领域开山之作】

目录 1 模型结构2 伪代码3 Loss计算方法 官方网站:https://openai.com/index/clip/ 论文:Learning Transferable Visual Models From Natural Language Supervision GitHub:https://github.com/openai/CLIP Colab:https://colab.r…

SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现

SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现 目录 SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来(优…

idea整合deepseek实现AI辅助编程

1.File->Settings 2.安装插件codegpt 3.注册deepseek开发者账号,DeepSeek开放平台 4.按下图指示创建API KEY 5.回到idea配置api信息,File->Settings->Tools->CodeGPT->Providers->Custom OpenAI API key填写deepseek的api key Chat…

k8s部署elasticsearch

前置环境:已部署k8s集群,ip地址为 192.168.10.1~192.168.10.5,总共5台机器。 1. 创建provisioner制备器(如果已存在,则不需要) 制备器的具体部署方式,参考我之前的文章:k8s部署rab…

(done) openMP学习 (Day13: 线程私有数据和如何支持库(Pi again),蒙特卡洛计算 Pi,线性同余法)

url: https://dazuozcy.github.io/posts/introdution-to-openmp-intel/#23-%E5%8F%AF%E6%80%95%E7%9A%84%E4%B8%9C%E8%A5%BF%E5%86%85%E5%AD%98%E6%A8%A1%E5%9E%8Batomicsflushpairwise%E5%90%8C%E6%AD%A5%20 视频:https://www.bilibili.com/video/BV1SW411s7ST?s…

借助AI,轻松读好书

读书笔记 AI可以帮助我们写读书笔记,通过智能化的分类和标注技术,将我们的笔记进行分类整理,使其更加清晰易懂,帮助我们高效,准确,深入的总结和掌握书中的知识,实现更好的学习和成长。 《异类》…