计算机竞赛 题目: 基于深度学习的疲劳驾驶检测 深度学习

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现目标
  • 3 当前市面上疲劳驾驶检测的方法
  • 4 相关数据集
  • 5 基于头部姿态的驾驶疲劳检测
    • 5.1 如何确定疲劳状态
    • 5.2 算法步骤
    • 5.3 打瞌睡判断
  • 6 基于CNN与SVM的疲劳检测方法
    • 6.1 网络结构
    • 6.2 疲劳图像分类训练
    • 6.3 训练结果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的驾驶疲劳检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

关于对疲劳驾驶的研究不在少数, 不少学者从人物面部入手展开。 人类的面部包含着许多不同的特征信息, 例如其中一些比较明显的特征如打哈欠、 闭眼、
揉眼等表情特征可用来作为判断驾驶员是否处于疲劳状态的依据。 随着计算机技术的不断发展, 尤其是在人工智能相关技术勃发的今天,
借助计算机可以快速有效的识别出图片中人脸特征, 对处于当前时刻驾驶员的精神状态做出判断, 并将疲劳预警信息传达给司机, 以保证交通的安全运行,
减少伤亡事故的发生。

2 实现目标

经查阅相关文献,疲劳在人体面部表情中表现出大致三个类型:打哈欠(嘴巴张大且相对较长时间保持这一状态)、眨眼(或眼睛微闭,此时眨眼次数增多,且眨眼速度变慢)、点头(瞌睡点头)。本实验从人脸朝向、位置、瞳孔朝向、眼睛开合度、眨眼频率、瞳孔收缩率等数据入手,并通过这些数据,实时地计算出驾驶员的注意力集中程度,分析驾驶员是否疲劳驾驶和及时作出安全提示。

3 当前市面上疲劳驾驶检测的方法

学长通过对疲劳驾驶在不同方法下研究进展的分析, 可以更清晰的认识的到当下对该问题较为有效的判定方法。 根据研究对象的不同对检测方法进行分类,
具体分类方法如图

在这里插入图片描述

基于驾驶员面部特征的检测方法是根据人在疲劳时面部变化来分析此时的精神状态。 人在瞌睡、 疲劳时面部表情与清醒时有着明显的区别。
通过装置在车辆中的摄像头对驾驶员人脸图片的采集, 利用计算机图像处理和模式识别, 可以有效检测驾驶员的疲
劳特征信息, 比较直观的特征有: 打哈欠, 眨眼, 低头等。

4 相关数据集

学长收集的疲劳检测数据集

驾驶疲劳人脸数据库图片来源分为 3 部分, 每部分均包含疲劳、 轻度疲劳和非疲劳

在这里插入图片描述

5 基于头部姿态的驾驶疲劳检测

5.1 如何确定疲劳状态

  • 思路一:可利用姿态估计结果(如Pitch的读数)来判断是否点头及点头幅度

  • 思路二:或用鼻尖处30号点的前后移动值(或是方差,方差表示一个单位时间数据的偏离程度,程度越大,则表示发生点头动作的概率越大、点头幅度越大)

在这里插入图片描述

5.2 算法步骤

  • 第一步:2D人脸关键点检测;

  • 第二步:3D人脸模型匹配;

  • 第三步:求解3D点和对应2D点的转换关系;

  • 第四步:根据旋转矩阵求解欧拉角。

    import cv2
    import dlib
    import numpy as np
    from imutils import face_utils
    """
    思路:第一步:2D人脸关键点检测;第二步:3D人脸模型匹配;第三步:求解3D点和对应2D点的转换关系;第四步:根据旋转矩阵求解欧拉角。
    """# 加载人脸检测和姿势估计模型(dlib)face_landmark_path = 'D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat'"""
    只要知道世界坐标系内点的位置、像素坐标位置和相机参数就可以搞定旋转和平移矩阵(OpenCV自带函数solvePnp())
    """# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cppobject_pts = np.float32([[6.825897, 6.760612, 4.402142],  #33左眉左上角[1.330353, 7.122144, 6.903745],  #29左眉右角[-1.330353, 7.122144, 6.903745], #34右眉左角[-6.825897, 6.760612, 4.402142], #38右眉右上角[5.311432, 5.485328, 3.987654],  #13左眼左上角[1.789930, 5.393625, 4.413414],  #17左眼右上角[-1.789930, 5.393625, 4.413414], #25右眼左上角[-5.311432, 5.485328, 3.987654], #21右眼右上角[2.005628, 1.409845, 6.165652],  #55鼻子左上角[-2.005628, 1.409845, 6.165652], #49鼻子右上角[2.774015, -2.080775, 5.048531], #43嘴左上角[-2.774015, -2.080775, 5.048531],#39嘴右上角[0.000000, -3.116408, 6.097667], #45嘴中央下角[0.000000, -7.415691, 4.070434]])#6下巴角# 相机坐标系(XYZ):添加相机内参K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]# 像素坐标系(xy):填写凸轮的本征和畸变系数cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
    dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)# 重新投影3D点的世界坐标轴以验证结果姿势reprojectsrc = np.float32([[10.0, 10.0, 10.0],[10.0, 10.0, -10.0],[10.0, -10.0, -10.0],[10.0, -10.0, 10.0],[-10.0, 10.0, 10.0],[-10.0, 10.0, -10.0],[-10.0, -10.0, -10.0],[-10.0, -10.0, 10.0]])# 绘制正方体12轴line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],[4, 5], [5, 6], [6, 7], [7, 4],[0, 4], [1, 5], [2, 6], [3, 7]]def get_head_pose(shape):# 填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/"""17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角"""# 像素坐标集合image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],shape[39], shape[42], shape[45], shape[31], shape[35],shape[48], shape[54], shape[57], shape[8]])"""用solvepnp或sovlepnpRansac,输入3d点、2d点、相机内参、相机畸变,输出r、t之后用projectPoints,输入3d点、相机内参、相机畸变、r、t,输出重投影2d点计算原2d点和重投影2d点的距离作为重投影误差"""# solvePnP计算姿势——求解旋转和平移矩阵:# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)# projectPoints重新投影误差reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示# 计算欧拉角calc euler angle# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrixrotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将旋转矩阵转换为旋转向量)pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 水平拼接,vconcat垂直拼接# eulerAngles –可选的三元素矢量,包含三个以度为单位的欧拉旋转角度_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)# 将投影矩阵分解为旋转矩阵和相机矩阵return reprojectdst, euler_angledef main():# returncap = cv2.VideoCapture(0)if not cap.isOpened():print("Unable to connect to camera.")return# 检测人脸detector = dlib.get_frontal_face_detector()# 检测第一个人脸的关键点predictor = dlib.shape_predictor(face_landmark_path)while cap.isOpened():ret, frame = cap.read()if ret:face_rects = detector(frame, 0)if len(face_rects) > 0:# 循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息shape = predictor(frame, face_rects[0])# 将脸部特征信息转换为数组array的格式shape = face_utils.shape_to_np(shape)# 获取头部姿态reprojectdst, euler_angle = get_head_pose(shape)pitch = format(euler_angle[0, 0])yaw = format(euler_angle[1, 0])roll = format(euler_angle[2, 0])print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))# 标出68个特征点for (x, y) in shape:cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)# 绘制正方体12轴for start, end in line_pairs:cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))# 显示角度结果cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (20, 20), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (20, 50), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (20, 80), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)    # 按q退出提示cv2.putText(frame, "Press 'q': Quit", (20, 450),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)# 窗口显示 show with opencvcv2.imshow("Head_Posture", frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头 release cameracap.release()# do a bit of cleanupcv2.destroyAllWindows()if __name__ == '__main__':main()

在这里插入图片描述

5.3 打瞌睡判断

头部姿态判断打瞌睡得到实时头部姿态的旋转角度过后,为头部旋转角度的3个参数Yaw,Pitch和Roll的示意图,驾驶员在打瞌睡时,显然头部会做类似于点头和倾斜的动作.而根据一般人的打瞌睡时表现出来的头部姿态,显然很少会在Yaw上有动作,而主要集中在Pitch和Roll的行为.设定参数阈值为0.3,在一个时间段内10
s内,当I PitchI≥20°或者|Rolll≥20°的时间比例超过0.3时,就认为驾驶员处于打瞌睡的状态,发出预警。

在这里插入图片描述

from scipy.spatial import distance as distfrom imutils.video import FileVideoStreamfrom imutils.video import VideoStreamfrom imutils import face_utilsimport numpy as np # 数据处理的库 numpyimport argparseimport imutilsimport timeimport dlibimport cv2import mathimport timefrom threading import Thread,# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cppobject_pts = np.float32([[6.825897, 6.760612, 4.402142],  #33左眉左上角[1.330353, 7.122144, 6.903745],  #29左眉右角[-1.330353, 7.122144, 6.903745], #34右眉左角[-6.825897, 6.760612, 4.402142], #38右眉右上角[5.311432, 5.485328, 3.987654],  #13左眼左上角[1.789930, 5.393625, 4.413414],  #17左眼右上角[-1.789930, 5.393625, 4.413414], #25右眼左上角[-5.311432, 5.485328, 3.987654], #21右眼右上角[2.005628, 1.409845, 6.165652],  #55鼻子左上角[-2.005628, 1.409845, 6.165652], #49鼻子右上角[2.774015, -2.080775, 5.048531], #43嘴左上角[-2.774015, -2.080775, 5.048531],#39嘴右上角[0.000000, -3.116408, 6.097667], #45嘴中央下角[0.000000, -7.415691, 4.070434]])#6下巴角# 相机坐标系(XYZ):添加相机内参K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]# 像素坐标系(xy):填写凸轮的本征和畸变系数cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)# 重新投影3D点的世界坐标轴以验证结果姿势reprojectsrc = np.float32([[10.0, 10.0, 10.0],[10.0, 10.0, -10.0],[10.0, -10.0, -10.0],[10.0, -10.0, 10.0],[-10.0, 10.0, 10.0],[-10.0, 10.0, -10.0],[-10.0, -10.0, -10.0],[-10.0, -10.0, 10.0]])# 绘制正方体12轴line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],[4, 5], [5, 6], [6, 7], [7, 4],[0, 4], [1, 5], [2, 6], [3, 7]]def get_head_pose(shape):# 头部姿态估计# (像素坐标集合)填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/# 17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/# 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],shape[39], shape[42], shape[45], shape[31], shape[35],shape[48], shape[54], shape[57], shape[8]])# solvePnP计算姿势——求解旋转和平移矩阵:# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)# projectPoints重新投影误差:原2d点和重投影2d点的距离(输入3d点、相机内参、相机畸变、r、t,输出重投影2d点)reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示# 计算欧拉角calc euler angle# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrixrotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将旋转矩阵转换为旋转向量)pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 水平拼接,vconcat垂直拼接# decomposeProjectionMatrix将投影矩阵分解为旋转矩阵和相机矩阵_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)pitch, yaw, roll = [math.radians(_) for _ in euler_angle]pitch = math.degrees(math.asin(math.sin(pitch)))roll = -math.degrees(math.asin(math.sin(roll)))yaw = math.degrees(math.asin(math.sin(yaw)))print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))return reprojectdst, euler_angle# 投影误差,欧拉角def eye_aspect_ratio(eye):# 垂直眼标志(X,Y)坐标A = dist.euclidean(eye[1], eye[5])# 计算两个集合之间的欧式距离B = dist.euclidean(eye[2], eye[4])# 计算水平之间的欧几里得距离# 水平眼标志(X,Y)坐标C = dist.euclidean(eye[0], eye[3])# 眼睛长宽比的计算ear = (A + B) / (2.0 * C)# 返回眼睛的长宽比return eardef mouth_aspect_ratio(mouth):# 嘴部A = np.linalg.norm(mouth[2] - mouth[9])  # 51, 59B = np.linalg.norm(mouth[4] - mouth[7])  # 53, 57C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55mar = (A + B) / (2.0 * C)return mar# 定义常数# 眼睛长宽比# 闪烁阈值EYE_AR_THRESH = 0.2EYE_AR_CONSEC_FRAMES = 3# 打哈欠长宽比# 闪烁阈值MAR_THRESH = 0.5MOUTH_AR_CONSEC_FRAMES = 3# 瞌睡点头HAR_THRESH = 0.3NOD_AR_CONSEC_FRAMES = 3# 初始化帧计数器和眨眼总数COUNTER = 0TOTAL = 0# 初始化帧计数器和打哈欠总数mCOUNTER = 0mTOTAL = 0# 初始化帧计数器和点头总数hCOUNTER = 0hTOTAL = 0# 初始化DLIB的人脸检测器(HOG),然后创建面部标志物预测print("[INFO] loading facial landmark predictor...")# 第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器detector = dlib.get_frontal_face_detector()# 第二步:使用dlib.shape_predictor获得脸部特征位置检测器predictor = dlib.shape_predictor('D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat')# 第三步:分别获取左右眼面部标志的索引(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"](rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"](mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]# 第四步:打开cv2 本地摄像头cap = cv2.VideoCapture(0)# 从视频流循环帧while True:# 第五步:进行循环,读取图片,并对图片做维度扩大,并进灰度化ret, frame = cap.read()frame = imutils.resize(frame, width=720)gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 第六步:使用detector(gray, 0) 进行脸部位置检测rects = detector(gray, 0)# 第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息for rect in rects:shape = predictor(gray, rect)# 第八步:将脸部特征信息转换为数组array的格式shape = face_utils.shape_to_np(shape)# 第九步:提取左眼和右眼坐标leftEye = shape[lStart:lEnd]rightEye = shape[rStart:rEnd]# 嘴巴坐标mouth = shape[mStart:mEnd]        # 第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EARleftEAR = eye_aspect_ratio(leftEye)rightEAR = eye_aspect_ratio(rightEye)ear = (leftEAR + rightEAR) / 2.0# 打哈欠mar = mouth_aspect_ratio(mouth)# 第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作leftEyeHull = cv2.convexHull(leftEye)rightEyeHull = cv2.convexHull(rightEye)cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)mouthHull = cv2.convexHull(mouth)cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1)# 第十二步:进行画图操作,用矩形框标注人脸left = rect.left()top = rect.top()right = rect.right()bottom = rect.bottom()cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 1)    '''分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动'''# 第十三步:循环,满足条件的,眨眼次数+1if ear < EYE_AR_THRESH:# 眼睛长宽比:0.2COUNTER += 1else:# 如果连续3次都小于阈值,则表示进行了一次眨眼活动if COUNTER >= EYE_AR_CONSEC_FRAMES:# 阈值:3TOTAL += 1# 重置眼帧计数器COUNTER = 0# 第十四步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示cv2.putText(frame, "Faces: {}".format(len(rects)), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)     cv2.putText(frame, "COUNTER: {}".format(COUNTER), (150, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "Blinks: {}".format(TOTAL), (450, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)'''计算张嘴评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示打了一次哈欠,同一次哈欠大约在3帧'''# 同理,判断是否打哈欠    if mar > MAR_THRESH:# 张嘴阈值0.5mCOUNTER += 1cv2.putText(frame, "Yawning!", (10, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)else:# 如果连续3次都小于阈值,则表示打了一次哈欠if mCOUNTER >= MOUTH_AR_CONSEC_FRAMES:# 阈值:3mTOTAL += 1# 重置嘴帧计数器mCOUNTER = 0cv2.putText(frame, "COUNTER: {}".format(mCOUNTER), (150, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "MAR: {:.2f}".format(mar), (300, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "Yawning: {}".format(mTOTAL), (450, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)"""瞌睡点头"""# 第十五步:获取头部姿态reprojectdst, euler_angle = get_head_pose(shape)har = euler_angle[0, 0]# 取pitch旋转角度if har > HAR_THRESH:# 点头阈值0.3hCOUNTER += 1else:# 如果连续3次都小于阈值,则表示瞌睡点头一次if hCOUNTER >= NOD_AR_CONSEC_FRAMES:# 阈值:3hTOTAL += 1# 重置点头帧计数器hCOUNTER = 0# 绘制正方体12轴for start, end in line_pairs:cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))# 显示角度结果cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (10, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 255, 0), thickness=2)# GREENcv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (150, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (255, 0, 0), thickness=2)# BLUEcv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (300, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)# RED    cv2.putText(frame, "Nod: {}".format(hTOTAL), (450, 90),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)# 第十六步:进行画图操作,68个特征点标识for (x, y) in shape:cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)print('嘴巴实时长宽比:{:.2f} '.format(mar)+"\t是否张嘴:"+str([False,True][mar > MAR_THRESH]))print('眼睛实时长宽比:{:.2f} '.format(ear)+"\t是否眨眼:"+str([False,True][COUNTER>=1]))# 确定疲劳提示:眨眼50次,打哈欠15次,瞌睡点头15次if TOTAL >= 50 or mTOTAL>=15 or hTOTAL>=15:cv2.putText(frame, "SLEEP!!!", (100, 200),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 3)# 按q退出cv2.putText(frame, "Press 'q': Quit", (20, 500),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)# 窗口显示 show with opencvcv2.imshow("Frame", frame)# if the `q` key was pressed, break from the loopif cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头 release cameracap.release()# do a bit of cleanupcv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

6 基于CNN与SVM的疲劳检测方法

6.1 网络结构

学长将卷积神经网络作为特征提取器, 支持向量机作为分类识别器并通过串联将两者结合 , 构造理想的深度识别模型, 提高对驾驶员疲劳的识别准确率。
本次课题主要以实现提高识别精度为目的, 设计使用的特征提取网络结构中卷积层、 池化层以及全连接层个数均为两层;
在网络的结尾处添加一层支持向量机作为识别分类器;

在这里插入图片描述
根据对卷积神经网络的描述, 这里设计使用的网络结构为: 输入层、 二层卷积层、 二层池化层、 二层全连接层以及 SVM
分类器组成的卷积神经网络对采集数据进行实验。

可将网络视为三个部分, 数据输入部分即网络输入层, 为特征提取部分由卷积层和池化层构成, SVM 为分类识别部分; 三部分网络串联出整体识别框架,
且相互间约束不大, 为后续优化工作提供了条件。

6.2 疲劳图像分类训练

网络的训练由于数据量较大进行实验时将数据分为多个批次, 每个批次中含有 20张图像, 经过前向、 反向传播后更新网络参数, 训练出误差合适的网络。 测试时,
图像由网络进行识别, 根据得到的识别正确率来验证网络的可行性。

在这里插入图片描述

疲劳驾驶检测需对网络进行训练, 在保证网络训练准确率达到一定精度后即可对图像进行判别; 疲劳驾驶网络训练算法过程如下:

  • Step1: 网络初始化: 初始化网络学习率η, 在数值范围[0, 1]中随机初始化网络参数权值及偏置值; 设置网络结构: 卷积核大小为 5×5, 每批次样本数量 20;
  • Step2: 随机选择数据库内面部表情图像并依次输入网络, 网络按照送入每一批次的图像进行训练;
  • Step3: 网络将训练得到的输出值同图像期望值进行比较, 计算出输出误差;
  • Step4: 根据反向传播原理将误差反向传播计算, 并调整网络参数权值和偏置值;
  • Step5: 判断迭代次数, 达到期望的迭代步数后转到 Step6, 否则转到 Step3;
  • Step6: 将 CNN 提取到的图像特征传入 SVM 中进行训练;
  • Step7: 结束。

6.3 训练结果

学长将对建立起的数据集进行实验, 实验中分别在每一批次下对识别正确和错误个数进行统计, 然后同批次中图片数量相比, 得出最终的准确率和损失率(错误率) 。

在这里插入图片描述
在这里插入图片描述

模型测试结果

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/151247.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iTunes更新iOS17出现发生未知错误4000的原因和解决方案

有不少人使用iTunes更新iOS 17时出现「无法更新iPhone发生未知的错误4000」的错误提示&#xff0c;不仅不知道iTunes升级失败的原因&#xff0c;也无从解决iPhone无法更新4000的问题。 小编今天就分享iPhone更新iOS系统出现4000错误提示的原因和对应的解决方案。 为什么iPhone…

Flink学习笔记(二):Flink内存模型

文章目录 1、配置总内存2、JobManager 内存模型3、TaskManager 内存模型4、图形化展示5、实际案例计算内存分配 1、配置总内存 Flink JVM 进程的进程总内存&#xff08;Total Process Memory&#xff09;包含了由 Flink 应用使用的内存&#xff08;Flink 总内存&#xff09;以…

STM32复习笔记(六):STM32远程升级BootLoader相关

目录 Preface&#xff1a; &#xff08;一&#xff09;STM32上电启动流程 &#xff08;二&#xff09;BootLoader相关 &#xff08;三&#xff09;Clion配置 Preface&#xff1a; 有关STM32的BootLoader主要还是参考了许多大佬的文章&#xff0c;这里只是简单地列举一下&am…

【FISCO-BCOS】十七、角色的权限控制

目录 一、角色定义 二、账户权限控制 1.委员新增、撤销与查询 2.委员权重修改 3.委员投票生效阈值修改 4. 运维新增、撤销与查询 一、角色定义 分为治理方、运维方、监管方和业务方。考虑到权责分离&#xff0c;治理方、运维方和开发方权责分离&#xff0c;角色互斥。 治理…

C#LINQ

LINQ&#xff08;Language Integrated Query )语言集成查询&#xff0c;是一组用于C#和VB语言的拓展&#xff0c;它允许VB或者C#代码以操作内存数据的方式&#xff0c;查询数据库。 LINQ使用的优点&#xff1a; 无需复杂学习过程即可上手。编写更少代码即可创建完整应用。更快…

SpringMVC系列-4 参数解析器

背景&#xff1a; 本文作为SpringMVC系列的第四篇&#xff0c;介绍参数解析器。本文讨论的参数解析表示从HTTP消息中解析出JAVA对象或流对象并传参给Controller接口的过程。 本文内容包括介绍参数解析器工作原理、常见的参数解析器、自定义参数解析器等三部分。其中&#xff0…

【刷题篇】回溯算法(深度优先搜索(二))

文章目录 岛屿数量电话号码的字母组合组合总和活字印刷 岛屿数量 给你一个由 ‘1’&#xff08;陆地&#xff09;和 ‘0’&#xff08;水&#xff09;组成的的二维网格&#xff0c;请你计算网格中岛屿的数量。 岛屿总是被水包围&#xff0c;并且每座岛屿只能由水平方向和/或竖直…

C++笔记之不同buffer数量下的生产者-消费者机制

C笔记之不同buffer数量下的生产者-消费者机制 文章目录 C笔记之不同buffer数量下的生产者-消费者机制0.在不同的缓冲区数量下&#xff0c;生产者-消费者机制的实现方式和行为的区别1.最简单的生产者-消费者实现&#xff1a;抄自 https://mp.weixin.qq.com/s/G1lHNcbYU1lUlfugXn…

Rust中的枚举和模式匹配

专栏简介&#xff1a;本专栏作为Rust语言的入门级的文章&#xff0c;目的是为了分享关于Rust语言的编程技巧和知识。对于Rust语言&#xff0c;虽然历史没有C、和python历史悠远&#xff0c;但是它的优点可以说是非常的多&#xff0c;既继承了C运行速度&#xff0c;还拥有了Java…

Antv/s2 明细表 透视表实现和性能优化(一)

前言 以我实际项目环境为准&#xff0c;vuets为技术框架&#xff0c;代码如果有什么不懂欢迎留言评论我会回复的 透视表 定义文件 class PivotTableControl extends BaseControl {type pivotTable;label controls.chart.pivotTable;icon tc-color-pivot-table;widget () &…

目标识别项目实战:基于Yolov7-LPRNet的动态车牌目标识别算法模型(三)

前言 目标识别如今以及迭代了这么多年&#xff0c;普遍受大家认可和欢迎的目标识别框架就是YOLO了。按照官方描述&#xff0c;YOLOv8 是一个 SOTA 模型&#xff0c;它建立在以前 YOLO 版本的成功基础上&#xff0c;并引入了新的功能和改进&#xff0c;以进一步提升性能和灵活性…

平凡工作也能创造卓越:学习公文写作的逻辑与技巧

平凡工作也能创造卓越&#xff1a;学习公文写作的逻辑与技巧 前言如何把平凡的工作写出光环1.个人不能超越集体2.工作成果的概括要准确3.描写平凡工作的难点痛点 书籍介绍关键点关键词 书籍亮点内容简介购买链接参与方式往期赠书回顾 前言 如何把平凡的工作写出光环 &#x1…

docker部署Vaultwarden密码共享管理系统

Vaultwarden是一个开源的密码管理器&#xff0c;它是Bitwarden密码管理器的自托管版本。它提供了类似于Bitwarden的功能&#xff0c;允许用户安全地存储和管理密码、敏感数据和身份信息。 Vaultwarden的主要特点包括&#xff1a; 1. 安全的数据存储&#xff1a;Vaultwarden使…

运行在移动设备上的ML机器学习任务——基于MediaPipe的手势识别

前期的文章我们介绍了MediaPipe的人手关键点检测。其检测的21个点的坐标位置如下: 当检测到其关键点后,我们就可以利用此关键点来进行人手手势识别。MediaPipe 手势识别器任务可实时识别手势,并提供识别的手势结果。我们可以使用此任务来识别用户的特定手势,并调用与这些手…

Andriod 简单控件

目录 一、文本显示1.1 设置文本内容1.2 设置文本大小1.3 设置文本颜色 二、视图基础2.1 设置视图宽高2.2 设置视图间距2.3 设置视图对齐方式 三、常用布局3.1 线性布局LinearLayout3.2 相对布局RelativeLayout3.3 网格布局GridLayout3.4 滚动视图ScrollView 四、按钮触控4.1 按…

SwiftUI Spacer() onTapGesture 无法触发

问题&#xff1a;点击这个黑色区域不会 print&#xff0c;黑色区域看上去刚好是 Spacer() 占据的区域 解决办法&#xff1a;不使用 onTapGesture&#xff0c;用 Button 包裹一下 Code: import SwiftUIstruct TestTap: View {var body: some View {NavigationStack {List {Sect…

正则验证用户名和跨域postmessage

一、正则验证用户名 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>登录</title> </head> <body> <form action"/login" method"post"><input type…

完美解决 flex 实现一行三个,显示多行,左对齐

效果图 代码 <body><section class"content"><div class"item">元素</div><div class"item">元素</div><div class"item">元素</div><div class"item">元素</di…

Node.js操作MySQL8.0数据库无法连接

Node.js操作MySQL8.0数据库无法连接 原创&#xff1a;丶无殇  2023-10-07 报错内容 使用node.js连接数据库MySQL 8时候&#xff0c;报错ER_NOT_SUPPORTED_AUTH_MODE&#xff0c;并且提示Client does not support authentication protocol requested by server; consider upg…

【python】可视化-绘制带有边权重的无向图

文章目录 需求示例数据代码实现 需求 输入数据表(矩阵)&#xff0c;绘制无向图。 示例数据 **示例数据1&#xff1a;**3个特征之间的关系数据 (data1.txt) featuresfeature1feature2feature3feature110.60.8feature20.610.3feature30.80.31 **示例数据2&#xff1a;**4个特…