计算机视觉简介(1)

任何计算机视觉处理流程都始于成像系统,它从景物中捕获反射出来的光线,并将光信号转换成计算机可以读取和处理的图像格式 在计算机成像技术发展的早期,图像通过把胶卷或印刷图像素 化后获得;而现在图 像通常直接由数码相机获取,并存储成称为像素的有序数字 目前已有很多关于图像采集和照相机内部工作原理的教科书(例如光学、机械控制和彩色滤波等), 展示了光线进入相机形成图像的采样( 通过图像网格划分)和 量化(即用有限的整数 表示每 个像素的颜 色值) 过程
所有图像可以看作一个矩阵(或三 个矩阵,如果分别考虑色彩平面,该矩阵是景物的反射光在相机成像平面上的强度和色彩信息的量化数据, 显示了景物在数码相机上成像的过程:相机中的传感器阵列决定了 图像的大小和分辨率 假设传感器阵列有 个传感器,则产生大小的图像。每个传感器捕获通过透镜入射到该传感器上的光线。对于一位图像,传感器为每个采样赋予 0到(2的b次方  -1) 间的值 。假设一 位图像,那么采样值就在0到255 之间,如图 1-1 所示 上述过程称为采样和量化.所谓采样就是在连续视场中选择某些点;所谓量化就是把光强的取值限制在有限的离散数值内。在相机设计和相机模型中,采样、量化和图像形成涉及很多主题,感兴趣的读者可以查阅相关文献并进行更深入 的研究 。彩 色图像在照相机中通常会分别对应生成红 ( CR )、绿 ( CG) 和蓝 ( CB ) 个基色图像 。如 产生这些 图像 取决于相机,大多数消 费级相 机在传感器平面前设 置滤色器来捕获所有三个颜色通道的马赛克图像,然后依靠“解马赛克”过程来创建全分辨率 、分离的R,G,B 图像。
有了这个装置,我们就能把图像表示为计算机中可存储的数字数据,称为图像的像素表示。每个图像是表示一个(灰色)或三个(彩色)或更多(深度和其他场)通道的矩阵或张量。像素顺序与采样顺序相同,也就是采集像素的传感器的位置顺序。像素值越大,对应的颜色强度就越大,这可能是图像最明显的表示方法。图像越大,像素越多。当要捕获景物的细节时,传感器需靠得更近,产生的图像分辨率也越高。如果用两个大小不同的图像来拍摄现实世界的相同区域和视场,那么较大图像比较小图像具有更高的分辨率,这是因为较大图像可以分辨更多的细

节。对于灰度图像,我们通常使用二维离散矩阵I(ni,n2)来表示像素值矩阵,其中n1和n2分别索引矩阵的第n行和第n列的像素,I(ni,n2)的值对应像素强度。

虽然每个像素独立于其他像素进行采样,但相邻像素之间通常是相关的。因为典型场景不会在任何地方都有剧烈变化,除了两个不同实体间的边界像素外,相邻像素-般会很相似。因此,图像中像素值不连续(或变化较大)的“边界”能较好地识别出不同实体。通常情况下,除了实体边界的像素之外,自然景观的图像很多区域是平滑的(即没有变化或变化很小)。

如上所述,像素矩阵是图像的基本表示方式,通常称为空域表示。像素是对空间,更准确地说是对成像平面上的光强的测量值进行采样。还有使用所谓的频域方法来观察甚至获取图像,将图像分解成频率分量,类似于棱镜将太阳光分解成不同的色带。还有一些方法,如小波变换,使用时频变换来分析或分解图像,这里的时间在图像领域实际上是指空间。所有这些表示方法都称为图像的变换域表示。通常,图像的变换域表示是可逆的,即可以从变换域表示返回到原始图像。实际上,对于特定的处理任务使用哪种表示确实是个问题。除了空间域和变换域中的表示之外,许多计算机视觉任务首先从图像中(原始图像或一些变换域表示)计算各种类型的特征,然后基于所计算的特征执行- -些分析/推断任务。从某种意义上说,这种计算出的特征充当底层图像的新表示,故将此称为特征表示。下面,简要介绍几种常用的图像变换域表示和特征表示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/152338.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息驱动 —— SpringCloud Stream

Stream 简介 Spring Cloud Stream 是用于构建消息驱动的微服务应用程序的框架,提供了多种中间件的合理配置 Spring Cloud Stream 包含以下核心概念: Destination Binders:目标绑定器,目标指的是 Kafka 或者 RabbitMQ&#xff0…

记录一次springboot使用定时任务中@Async没有生效的场景

环境说明 jdk21springboot 3.0.11 springcloud 2022.0.0 spring-cloud-alibaba 2022.0.0.0 在开发一个定时触发的任务的时候,由于开发执行任务的函数比较耗费时间,所以采用异步解决问题。 发现并没有按照预期的触发 经询问后,发现当前类的…

2023年中国隆鼻行业发展历程及趋势分析:隆鼻手术市场将实现进一步增长[图]

隆鼻术就是以各种植入材料置入为主要方法,隆起或抬高鼻部形态为主要目的的鼻整形术式。隆鼻术可能是开展最多的整形美容手术之一。隆鼻术也是一种很成熟的美容手术,操作较为简单、安全、风险较小,也易于接受。 隆鼻行业分类 资料来源&#x…

这道面试题工作中经常碰到,但 99% 的程序员都答不上来

小时候都被问过一个脑筋急转弯,把大象放进冰箱有几个步骤?我们一开始都会抓耳挠腮,去想着该如何把大象塞进冰箱。最终揭晓的答案却根本不关心具体的操作方法,只是提供了 3 个步骤组成的流程,「把冰箱打开,把…

Notepad++提取含有特定字符串的行

ctrl M快捷键,进入"标记" 页面 标记所在行–循环查找-- 正则表达式 – 输入关键字 – 全部标记 – Copy Marked Text 关键字格式如下: .*关键字.*ctrl v,粘贴即可。

深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict

深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict 1、nn.Sequential 、 nn.ModuleList 、 nn.ModuleDict 类都继承自 Module 类。2、nn.Sequential、nn.ModuleList 和 nn.ModuleDict语法3、Sequential 、ModuleDict、 ModuleList 的区别…

阿里云数据库MongoDB恢复到本地

共两种方式,建议使用第二种的逻辑恢复,比较方便快捷 一、下载物理备份文件 下载的格式是xb的,主要跟实例创建时间有关,2019年03月26日之前创建的实例,物理备份文件格式为tar,后面全部都是xb的格式了&#…

PTE阶段规划

目录 复习的各个阶段 线下应该如何 rs应对 从来都是流利度大于内容 推荐的练习网站 口语 DI 关键词是不能念错 口语 RL rl每日练习方法 ASQ 写作 swt 阅读 一半靠机经 听力 口语和听力 考模版来熟悉 熟悉模版 强调的是,整个的逻辑思维 字字和句句都…

【数据结构】排序

🐇 🔥博客主页: 云曦 📋系列专栏:数据结构 💨吾生也有涯,而知也无涯 💛 感谢大家👍点赞 😋关注📝评论 文章目录 前言一、排序的概念及运用二、常…

基于vue框架的uniapp小程序开发发现了新大陆

项目场景: 在基于vue框架的uniapp小程序开发中,在页面跳转时,当前页路径带参数,在跳转页中接受数据除了用官方推荐的保留当前页面,跳转到应用内的某个页面,使用onLoad(option)接受数据,但是我发…

TensorFlow入门(十四、数据读取机制(1))

TensorFlow的数据读取方式 TensorFlow的数据读取方式共有三种,分别是: ①预加载数据(Preloaded data) 预加载数据的方式,其实就是静态图(Graph)的模式。即将数据直接内嵌到Graph中,再把Graph传入Session中运行。 示例代码如下: import tensorflow.compat.v1 as tf tf.disabl…

CDN,DNS,ADN,SCDN,DCDN,ECDN,PCDN,融合CDN的介绍

一、CDN是什么? CDN的全称是Content Delivery Network,即内容分发网络。其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节,使内容传输得更快、更稳定。通过在网络各处放置节点服务器所构成的在现有的互联网基础之…

Windows系统搭建VisualSVN服务结合内网穿透实现公网访问

文章目录 前言1. VisualSVN安装与配置2. VisualSVN Server管理界面配置3. 安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4. 固定公网地址访问 前言 SVN 是 subversion 的缩写,是一个开放源代码的版本控制系统…

Ubuntu右上角不显示网络的图标解决办法

一.line5改为true sudo vim /etc/NetworkManager/NetworkManager.conf 二.重启网卡 sudo service network-manager stop sudo mv /var/lib/NetworkManager/NetworkManager.state /tmp sudo service network-manager start

超高频RFID模具精细化生产管理方案

近二十年来,我国的模具行业经历了快速发展的阶段,然而,模具行业作为一个传统、复杂且竞争激烈的行业,企业往往以订单为导向,每个订单都需要进行新产品的开发,从客户需求分析、结构确定、报价、设计、物料准…

大数据-玩转数据-Flink 海量数据实时去重

一、海量数据实时去重说明 借助redis的Set,需要频繁连接Redis,如果数据量过大, 对redis的内存也是一种压力;使用Flink的MapState,如果数据量过大, 状态后端最好选择 RocksDBStateBackend; 使用布隆过滤器,…

企业门户的必备选择,WorkPlus的定制化解决方案

在当今数字化时代,企业门户成为了企业内外沟通与协作的重要基础设施。WorkPlus作为领先的品牌,为企业提供了一站式的企业门户解决方案,旨在提升企业形象、改善内外部沟通与协作效率。本文将深入探讨WorkPlus如何通过定制化的设计,…

使用运放产生各种波形

目录复制 文章目录 RC正弦振荡电路文氏电桥振荡电路移项式正弦波振荡电路 集成函数发生器运算放大器驱动电容性负载峰值检波多通道运放未使用的运放接法 RC正弦振荡电路 文氏电桥振荡电路 这个振荡器起振条件RF > 2R1,起振后又希望RF 2R1产生矛盾怎么办? 将RF换…

Zama的fhEVM:基于全同态加密实现的隐私智能合约

1. 引言 Zama的fhEVM定位为: 基于全同态加密实现的隐私智能合约 解决方案 开源代码见: https://github.com/zama-ai/fhevm(TypeScript Solidity) Zama的fhEVM协议中主要包含: https://github.com/zama-ai/tfhe-…

东土科技与诺贝尔物理学奖2006年度得主斯穆特签约,加快布局工业AI

近日,诺贝尔物理学奖2006年度得主乔治.斯穆特教授与东土科技正式签约,成为东土科技工业人工智能顾问。 乔治斯穆特(George Fitzgerald Smoot)教授也曾获得爱因斯坦奖,在宇宙学、大数据、生物医学诊断仪器以及人工智能…