OpenCV级联分类器识别车辆实践笔记

1. OpenCV 级联分类器的基本原理

基于Haar特征的级联分类器的目标检测是Paul Viola和Michael Jones在2001年的论文中提出的一种有效的目标检测方法。这是一种基于机器学习的方法,从大量的正面和负面图像中训练级联函数。然后用它来检测其他图像中的物体。

Haar特征是一种反映图像的灰度变化的,像素分模块求差值的一种特征。它分为三类:边缘特征、线性特征、中心特征和对角线特征。就像卷积核一样。每个特征都是一个单独的值,由黑色矩形下的像素和减去白色矩形下的像素和得到。用黑白两种矩形框组合成特征模板,在特征模板内用 黑色矩形像素和减去白色矩形像素和来表示这个模版的特征值。
在这里插入图片描述
例如:脸部的一些特征能由矩形模块差值特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述在特定方向(水平、垂直、对角)上有明显像素模块梯度变化的图像结构。这样就可以进行区分人脸。

级联分类器(Cascade Classifier)是一种用于目标检测的机器学习模型,通常用于识别静态图像或视频流中的特定对象或物体。级联分类器的一个重要应用是人脸检测。

级联分类器基于强分类器的级联结构,其中每个强分类器都是由多个弱分类器组成的。弱分类器是一种简单而不太准确的分类器,但通过级联结构及其组合,可以达到高效且精确的目标检测效果。

2. 级联分类器CascadeClassifier检测的基本原理:

Haar特征分类器就是一个XML文件,用于存储检测特征,xml中存放的是训练后的特征池,特征size大小根据训练时的参数而定,检测的时候可以简单理解为就是将每个固定size特征(检测窗口)与输入图像的同样大小区域比较,如果匹配那么就记录这个矩形区域的位置,然后滑动窗口,检测图像的另一个区域,重复操作。由于输入的图像中特征大小不定,比如在输入图像中眼睛是50x50的区域,而训练时的是25x25,那么只有当输入图像缩小到一半的时候,才能匹配上,所以这里还有一个逐步缩小图像,也就是制作图像金字塔的流程。

利用Opencv自带的Haar特征分类器进行人脸检测,该文件中会描述人体各个部位的Haar特征值。包括人脸、眼睛、嘴唇等等。Haar特征分类器存放目录:OpenCV安装目录中的\data\ haarcascades目录下。

3. 静态图中车辆识别

from PIL import Image
import cv2
import numpy as npimage = Image.open('V1.png')
w,h = image.size
#image = image.resize((int(w/2),int(h/2)))
image_arr = np.array(image)
image

在这里插入图片描述

grey = cv2.cvtColor(image_arr,cv2.COLOR_BGR2GRAY)
dilated = cv2.dilate(blur,np.ones((3,3)))kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
closing = cv2.morphologyEx(dilated, cv2.MORPH_CLOSE, kernel) 
Image.fromarray(closing)

在这里插入图片描述

car_cascade_src = 'haarcascade_car.xml'
car_cascade = cv2.CascadeClassifier(car_cascade_src)
cars = car_cascade.detectMultiScale(closing, 1.1, 1)
cnt = 0
for (x,y,w,h) in cars:cv2.rectangle(image_arr,(x,y),(x+w,y+h),(255,0,0),2)cnt += 1
print(cnt, " cars found")
Image.fromarray(image_arr)
21  cars found

在这里插入图片描述

4. 动态视频中车辆识别

import cv2
import numpy as npcar_classifier= cv2.CascadeClassifier('haarcascade_car.xml')
cap= cv2.VideoCapture('cars.avi')while True:    ret, frame= cap.read()if ret:#frame= cv2.resize(frame, None, fx= 0.5, fy= 0.5, interpolation= cv2.INTER_LINEAR)gray= cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)cars= car_classifier.detectMultiScale(gray,1.2,3)for (x,y,w,h) in cars:cv2.rectangle(frame,(x,y),(x+w,y+h), (0,255,255),2)cv2.imshow('Cars', frame)else:print('warning: video is not load correctly or the video is finished')breakkey = cv2.waitKey(1)   #每一帧图像就显示一毫秒就可以,然后继续循环if key == 27:          #27是esc的ascall码break            cap.release()
cv2.destroyAllWindows()

在这里插入图片描述

5. 关键OpenCV函数说明

cv2.CascadeClassifier.detectMultiScale() 函数介绍
在 OpenCV 中,人脸检测使用的是 cv2.CascadeClassifier.detectMultiScale()函数,它可以检
测出图片中所有的人脸。该函数由分类器对象调用,其语法格式为:

objects = cv2.CascadeClassifier.detectMultiScale( image[,
scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]] )

式中各个参数及返回值的含义为:

  • image:待检测图像,通常为灰度图像。
  • scaleFactor:表示在前后两次相继的扫描中,搜索窗口的缩放比例。
  • minNeighbors:表示构成检测目标的相邻矩形的最小个数。默认情况下,该值为 3,意味着有 3 个以上的检测标记存在时,才认为人脸存在。如果希望提高检测的准确率,可以将该值设置得更大,但同时可能会让一些人脸无法被检测到。
  • flags:该参数通常被省略。在使用低版本 OpenCV(OpenCV 1.X 版本)时,它可能会被设置为 CV_HAAR_DO_CANNY_PRUNING,表示使用 Canny 边缘检测器来拒绝一些区域。
  • minSize:目标的最小尺寸,小于这个尺寸的目标将被忽略。
  • maxSize:目标的最大尺寸,大于这个尺寸的目标将被忽略。
  • objects:返回值,目标对象的矩形框向量组。

代码中所涉及到的模型和视频等资源,详见OpenCV级联分类器识别车辆实践笔记中所涉及到的资源。

参考:

小海聊智造. opencv 进阶10-人脸识别原理说明及示例-cv2.CascadeClassifier.detectMultiScale(). CSDN博客. 2023.08
Stray_Lambs. 浅析cv2.CascadeClassifier()函数. CSDN博客. 2019.09
HAMED ETEZADI ·Haar cascade classifier-Car Detection. Kaggle. 2022.04
How to Detect Cars in a Video in Python using OpenCV. Learning about Electronics

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/154067.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

八大排序详解(默认升序)

一、直接插入排序 直接插入排序:直接插入排序就是像打扑克牌一样,每张牌依次与前面的牌比较,遇到比自己大的就将大的牌挪到后面,遇到比自己小的就把自己放在它后面(如果自己最小就放在第一位),所有牌排一遍后就完成了排…

轻松驾驭Hive数仓,数据分析从未如此简单!

1 前言 先通过SparkSession read API从分布式文件系统创建DataFrame 然后,创建临时表并使用SQL或直接使用DataFrame API,进行数据转换、过滤、聚合等操作 最后,再用SparkSession的write API把计算结果写回分布式文件系统 直接与文件系统交…

基于三平面映射的地形纹理化【Triplanar Mapping】

你可能遇到过这样的地形:悬崖陡峭的一侧的纹理拉伸得如此之大,以至于看起来不切实际。 也许你有一个程序化生成的世界,你无法对其进行 UV 展开和纹理处理。 推荐:用 NSDT编辑器 快速搭建可编程3D场景 三平面映射(Trip…

CTF之CTF(夺旗赛)介绍

什么是CTF? CTF(Capture The Flag,中文一般译作“夺旗赛”)在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会,用以代替之前黑客们通过互相发起真实攻击进行…

2023年中国全固态电池市场发展趋势分析:全固态电池的渗透率将占据固态电池市场主体[图]

全固态电池是锂电池的一种细分,其电池的电解质和电极材料全部由固态材料构成,而非传统电池中常见的液态或者凝胶电解质。由于传统液态锂电池中电解液具有易燃特性,近年来相关安全事故频发,因此随着技术革新,固态电池的…

openGauss学习笔记-95 openGauss 数据库管理-访问外部数据库-postgres_fdw

文章目录 openGauss学习笔记-95 openGauss 数据库管理-访问外部数据库-postgres_fdw95.1 使用postgres_fdw95.2 postgres_fdw下推主要成分95.3 常见问题95.4 注意事项 openGauss学习笔记-95 openGauss 数据库管理-访问外部数据库-postgres_fdw openGauss的fdw实现的功能是各个…

[羊城杯 2020]black cat - 文件隐写+RCE(hash_hmac绕过)

[羊城杯 2020]black cat 1 解题流程1.1 第一步1.2 第二步1.3 第三步 1 解题流程 1.1 第一步 打开网站有首歌,按F12也是提示听歌,ctf-wscan扫描就flag.php下载歌,用010打开,发现有一段内容if(empty($_POST[Black-Cat-Sheriff]) |…

ThreeJS-3D教学五-材质

我们在ThreeJS-3D教学二&#xff1a;基础形状展示中有简单介绍过一些常用的材质&#xff0c;这次我们举例来具体看下效果&#xff1a; 代码是这样的&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8">&…

【Qt】三种方式实现抽奖小游戏

简介 本文章是基本Qt与C实现一个抽奖小游戏&#xff0c;用到的知识点在此前发布的几篇文章。 下面是跳转链接&#xff1a; 【Qt控件之QLabel】用法及技巧链接&#xff1a; https://blog.csdn.net/MrHHHHHH/article/details/133691441?spm1001.2014.3001.5501 【Qt控件之QPus…

CRMEB 标准版商城系统新增主题风格颜色【超级完整教程】

一、后台 1.新增主题图片 assets/images/brown.jpg和assets/images/brownsign.png 2.修改admin/src/pages/setting/themeStyle/index.vue 3.修改admin/src/pages/marketing/sign/index.vue 4.修改admin/src/pages/system/group/visualization.vue &#xff08;第三步和第四步…

嵌入式养成计划-33--数据库-sqlite3

七十一、 数据库 71.1 数据库基本概念 数据&#xff08;Data&#xff09; 能够输入计算机并能被计算机程序识别和处理的信息集合数据库 &#xff08;Database&#xff09;数据库是在数据库管理系统管理和控制之下&#xff0c;存放在存储介质上的数据集合 常用的数据库 大型数…

MapReduce(林子雨慕课课程)

文章目录 7. MapReduce7.1 MapReduce简介7.1.1 分布式并行编程7.1.2 MapReduce模型简介 7.2 MapReduce体系结构7.3 MapReduce工作流程概述7.4 Shuffle过程原理7.5 MapReduce应用程序的执行过程7.6 WordCount实例分析7.7 MapReduce的具体应用7.8 MaReduce编程实践 7. MapReduce …

Prometheus和grafana安装配置手册

1.简介 本文档为prometheus和grafana安装配置手册&#xff0c;prometheus和grafana的内容、和操作过程&#xff0c;详细介绍了服务监控配置、dashboard配置、告警配置等操作。 2.部署说明 Prometheus基于Golang编写&#xff08;需要安装&#xff09;&#xff0c;编译后的软件…

PyTorch 深度学习实战

文章目录 前言1. 环境安装1.Anaconda2.pytorch cuda 环境3.测试 前言 官网 https://pytorch.org/hub/pytorch_vision_vgg/ 1. 环境安装 1.Anaconda 可以参考这里&#xff1a;Anaconda学习 2.pytorch cuda 环境 我是按照下面的博客一步步完成&#xff0c;亲测有效 Pytorc…

移动应用-Android-开发指南

Android-UI开发指南 Android Studio调试UI设计UI框架布局Layout文本框 android的活动Activity基本概念Activity的生命周期Activity栈创建Activity管理ActivityActivity间传递数据 FragmentAdapterRecyclerViewRecyclerView Adapter&#xff08;适配器&#xff09;事件setOnItem…

基于BES平台音乐信号处理之DRC算法实现

基于BES平台音乐信号处理之DRC算法实现 是否需要申请加入数字音频系统研究开发交流答疑群(课题组)&#xff1f;加我微信hezkz17, 本群提供音频技术答疑服务 1 DRC实现 drc.h 2 调用 audio_process.c 3 DRC动态范围控制算法在音乐信号处理中的位置 4 DRC具体细节源码 可参考…

Lumos-az/MiniSQL阅读笔记

文章目录 处理SQL创建创建表RecordManager部分CatalogManager部分 创建索引IndexManager::createIndex部分API::createNewIndex部分CatalogManager::createIndex部分 插入删除删除表删除记录? 查询B树gif演示B树增删&#xff1a;插入&#xff1a;删除&#xff1a; 项目源码&am…

ArcGIS Pro地图可视化—双变量关系映射

原址链接ArcGIS Pro地图可视化—双变量关系映射https://mp.weixin.qq.com/s/g-pPBHPXMOEF5NHm06JcrA 这个方法很早很早以前就有了&#xff0c;可能大家早就知道了&#xff0c;可我昨天刚看到这个东西 https://en.wikipedia.org/wiki/Multivariate_map 像是上图&#xff0c;美国…

MyBatisPlus(十)判空查询

说明 判空查询&#xff0c;对应SQL语句中的 IS NULL语句&#xff0c;查询对应字段为 NULL 的数据。 isNull /*** 查询用户列表&#xff0c; 查询条件&#xff1a;电子邮箱为 null 。*/Testvoid isNull() {LambdaQueryWrapper<User> wrapper new LambdaQueryWrapper<…

ctfshow-web9(奇妙的ffifdyop绕过)

尝试万能密码登录&#xff0c;没有任何回显 尝试扫描目录&#xff0c;这里不知道为啥御剑什么都扫不到&#xff0c;使用dirsearch可以扫到robots.txt 查看robots协议 访问下载index.phps 查看index.phps 简单审计一下php代码&#xff1a; $password$_POST[password]; if(strl…