LATR:3D Lane Detection from Monocular Images with Transformer

参考代码:LATR

动机与主要工作:
之前的3D车道线检测算法使用诸如IPM投影、3D anchor加NMS后处理等操作处理车道线检测,但这些操作或多或少会存在一些负面效应。IPM投影对深度估计和相机内外参数精度有要求,anchor的方式需要一些如NMS的后处理辅助。这篇文章主要的贡献有两点:

  • 1)针对车道线的特性基于DETR目标检测算法提出了一种基于landline query的检测方法,为了使得query的初始化更合理借鉴了SparseInst方法从2D图像域中用不同实例来初始化query,并且建立车道线query的粒度不是车道线级别而是具体到了车道线上的点。
  • 2)用图像特征作为key和val是较难去学习其中的3D信息的,在相机内外参数已知情况下构建一个可学习的3D空间位置编码,通过decoder中多轮迭代和与图像特征融合预测残差方式,不断修正3D空间位置编码。

检测器的结构:
这篇文章的方法流程见下图所示:
在这里插入图片描述
可以从上图中看到backbone出来之后接一个车道线实例预测网络,由此实现lane query生成和初始化。对于图像特征使用3D信息嵌入的位置编码,只不过这个位置编码是在给定一个的初始化基础上修正而来的,也就是说在transformer解码的过程中这个位置编码的值是动态的。

车道线query构建:
这部分参考SparseInst中对于inst feature的构建过程,具体可以去查阅对应的论文,由此可以得到车道线query的特征表达 Q l a n e ∈ R N ∗ C Q_{lane}\in R^{N*C} QlaneRNC(这里是从特征图尺寸最大的那个特征上得到的)。而对于车道线来说,其是由多个点组成的,那么还需要对上面的点构建query,这里通过设定可学习的参数来实现 Q ∈ R M ∗ C Q_{}\in R^{M*C} QRMC。那么接下来就是使用broadcast机制实现最后车道线的query构建 Q ∈ R ( N ∗ M ) ∗ C Q\in R^{(N*M)*C} QR(NM)C

实例+点query的形式效果才是最好的:
在这里插入图片描述

图像feature的位置编码:
这里关注的是自动驾驶场景下的车道线,则根据车道线的分布特点可以为对应2D图像特征设置位置编码。这里的位置编码是首先在3D空间中进行采样(也就是文章定义的3D地平面),之后通过相机内外参数投影到图像中,以此来作为对应图像位置处的3D位置来源。只不过这里的3D地平面是动态更新的,在transformer的不同层中会预测不同的更新残差,定义的残差变量有旋转角度(偏航角) Δ θ \Delta \theta Δθ和平面高度 Δ h \Delta h Δh,其预测是通过一组FC层实现的:
[ Δ θ , Δ h ] = M L P ( A v g P o o l ( G [ X , M p ] ) ) [\Delta \theta,\Delta h]=MLP(AvgPool(\mathcal{G}[X,M_p])) [Δθ,Δh]=MLP(AvgPool(G[X,Mp]))
其中, G , X , M p \mathcal{G},X,M_p G,X,Mp分别代表2层卷机操作、图像特征、上一轮的地平面的位置编码。

则新一轮的平面点会使用下面的矩阵进行更新:
在这里插入图片描述

则在原本不准确的3D平面上就可以通过自适应回归的方式优化3D地平面,由此实现特征3D位置编码的优化。此外,地平面的约束还使用过车道线上的点投影建立起来
L p l a n e = ∑ u , v ∈ P ∩ L ∣ ∣ M p [ : , u , v ] − M l [ : , u , v ] ∣ ∣ 2 L_{plane}=\sum_{u,v\in \mathcal{P}\cap\mathcal{L}}||M_p[:,u,v]-M_l[:,u,v]||_2 Lplane=u,vPL∣∣Mp[:,u,v]Ml[:,u,v]2

最终的效果也就是使得下图中的绿色平面与红色的车道线接近。不过截止10.09.2023这部分的代码并没有开放出来。下图展示了地平面会随着迭代的进行收敛到实际车道线的位置上:
在这里插入图片描述
分析位置编码的作用,首先看位置编码带来的性能提升:
在这里插入图片描述

从上表可以看到位置编码确实能带来性能的提升,无论是视锥还是固定平面编码,只不过这里动态平面编码的方式更加适合车道线,因而相比起来有1个点的提升。这里说明准确的位置编码有助于得到更好的检测性能,而且文章提出的平面优化自由度只有2个,更多的维度是否能更好呢?

车道线query+位置编码两者对检测性能的影响:
在这里插入图片描述

对于后面车道线的解码部分就跟传统的DETR一致了,这里就不做展开。

不同数据集下的性能表现:
OpenLane validation:
在这里插入图片描述
OpenLane不同天气条件下的表现
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/156958.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【图像融合】差异的高斯:一种简单有效的通用图像融合方法[用于融合红外和可见光图像、多焦点图像、多模态医学图像和多曝光图像](Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

淘宝价格,淘宝商品优惠券数据接口,淘宝商品销量接口,淘宝商品详情数据接口,淘宝API接口

淘宝价格和商品优惠券数据接口是淘宝平台提供的官方数据接口,通过调用接口,可以获取到淘宝商品的价格信息和优惠券数据。 获取淘宝价格和商品优惠券数据接口的步骤如下: 输入淘宝网址登陆淘宝账号密码。点击获取key和secret。调用获取buyer…

android 与 flutter 之间的通信

文章目录 前言集成 flutter 混合开发android 与 flutter 之间的通信总结 一、前言 因为flutter 具有跨平台的属性,既可以在android上跑,也能在ios 上跑,所以为了节约开发的成本,减少人力,势必就会用到它。然而已有的…

04在命令行中使用Maven命令创建Maven版的Web工程,并将工程部署到服务器的步骤

创建Maven版的Web工程 使用命令生成Web工程 使用mvn archetype:generate命令生成Web工程时,需要使用一个专门生成Web工程骨架的archetype(参照官网看到它的用法) -D表示后面要附加命令的参数,字母D和后面的参数是紧挨着的,中间没有任何其它…

Ceph介绍与部署

Ceph介绍与部署 一、存储基础1.1、单机存储设备1.1.1、单机存储的问题 1.2、商业存储解决方案1.3、分布式存储(软件定义的存储 SDS)1.3.1、分布式存储的类型 二、Ceph 简介三、Ceph 优势四、Ceph 架构五、Ceph 核心组件5.1、Pool中数据保存方式支持两种类…

FlashDuty Changelog 2023-09-21 | 自定义字段和开发者中心

FlashDuty:一站式告警响应平台,前往此地址免费体验! 自定义字段 FlashDuty 已支持接入大部分常见的告警系统,我们将推送内容中的大部分信息放到了 Lables 进行展示。尽管如此,我们用户还是会有一些扩展或定制性的需求…

数据可视化

pip install matplotlib 一、各种图 #线形图 import numpy as np import pandas as pd df1pd.DataFrame(datanp.random.randn(1000,4),indexpd.date_range(start10/10/2023,periods1000),columnslist(ABCD)) df1.cumsum().plot()#2、条形图 df2pd.DataFrame(datanp.random.ra…

文本编辑器去除PDF水印

用文本编辑器打开pdf,搜索水印的特殊文字,全部替换。 另外一个水印字母间有空格。 替换完后保存。 重新打开pdf:

通常用哪些软件做数据可视化大屏?

数据可视化大屏是一种展示数据的方式,通过使用软件工具可以将数据以图表、地图、仪表盘等形式直观地呈现给用户。以下是常用的数据可视化大屏软件及其特点: 1. Datainside: - 特点:Datainside是一款功能强大且易于使用的数据可视…

绘制X-Bar-S和X-Bar-R图,监测过程,计算CPK过程能力指数

X-Bar-S图和X-Bar-R图是统计质量控制中常用的两种控制图,用于监测过程的稳定性和一致性。它们的主要区别在于如何计算和呈现数据的变化以及所关注的问题类型。 X-Bar-S图(平均值与标准偏差图): X-Bar代表样本均值,S代表…

HttpServletRequest对象与RequestDispatcher对象

一、HttpServletRequest对象 1.介绍 在Servlet API中,定义了一个HttpServletRequest接口,它继承自ServletRequest接口,专门用来封装HTTP请求消息。由于HTTP请求消息分为请求行、请求消息头和请求消息体三部分,因此,在…

ODrive移植keil(五)—— 开环控制和电流变换

目录 一、开环控制1.1、控制原理1.2、硬件接线1.3、代码说明1.4、程序演示1.5、程序架构的体现 二、电流变换2.1、理论说明2.2、代码说明 ODrive、VESC和SimpleFOC 教程链接汇总:请点击 一、开环控制 在SimpleFOC系列中有开环控制的教程,SimpleFOC移植S…

《Java极简设计模式》第08章:外观模式(Facade)

作者:冰河 星球:http://m6z.cn/6aeFbs 博客:https://binghe.gitcode.host 文章汇总:https://binghe.gitcode.host/md/all/all.html 源码地址:https://github.com/binghe001/java-simple-design-patterns/tree/master/j…

SpringBoot篇之集成Mybatis-plus

目录 前言一、Mybatis-plus介绍1.1 官网 二、代码生成器总结 前言 大家好,我是AK,整理的SpringBoot集成Mybatis-plus以及代码生成器的使用,时间原因简单的整理下,有问题的可以评论区见或私信我。 一、Mybatis-plus介绍 1.1 官网…

完整教程:Java+Vue+Websocket实现OSS文件上传进度条功能

引言 文件上传是Web应用开发中常见的需求之一,而实时显示文件上传的进度条可以提升用户体验。本教程将介绍如何使用Java后端和Vue前端实现文件上传进度条功能,借助阿里云的OSS服务进行文件上传。 技术栈 后端:Java、Spring Boot 、WebSock…

23种经典设计模式:单例模式篇(C++)

前言: 博主将从此篇单例模式开始逐一分享23种经典设计模式,并结合C为大家展示实际应用。内容将持续更新,希望大家持续关注与支持。 什么是单例模式? 单例模式是设计模式的一种(属于创建型模式 (Creational Pa…

PHP 员工工资管理系统mysql数据库web结构apache计算机软件工程网页wamp

一、源码特点 PHP 员工工资管理系统是一套完善的web设计系统,对理解php编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 php员工工资管理系统 代码 https://download.csdn.net/download/qq_41221322/884215…

python+opencv+深度学习实现二维码识别 计算机竞赛

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 pythonopencv深度学习实现二维码识别 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:3分 该项目较为新颖&…

Python高效实现网站数据挖掘

在当今互联网时代,SEO对于网站的成功至关重要。而Python爬虫作为一种强大的工具,为网站SEO带来了革命性的改变。通过利用Python爬虫,我们可以高效地实现网站数据挖掘和关键词分析,从而优化网站的SEO策略。本文将为您详细介绍如何利…

竞赛选题 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) …