一、583. 两个字符串的删除操作
题目链接/文章讲解/视频讲解:代码随想录
思考:
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数
2.确定递推公式
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,
有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
综上,取最小值
因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1]; } else {dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1); }
3.dp数组的初始化
dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同,很明显dp[i][0] = i,dp[0][j]同理
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1)); for (int i = 0; i <= word1.size(); i++) dp[i][0] = i; for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
4.确定遍历顺序
从上到下,从左到右
5.举例推导dp数组
代码实现:
class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);}}}return dp[word1.size()][word2.size()];}
};
- 时间复杂度: O(n * m)
- 空间复杂度: O(n * m)
二、72. 编辑距离
题目链接/文章讲解/视频讲解:代码随想录
思考:
1.确定dp数组(dp table)以及下标的含义
dp[i][j] :以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]
2.确定递推公式
首先要考虑清楚编辑的几种操作:
if (word1[i - 1] == word2[j - 1])不操作 if (word1[i - 1] != word2[j - 1])增删换
2.1不操作:dp[ i ] = dp[i - 1]
if (word1[i - 1] == word2[j - 1]),那么不用任何操作,dp[ i ] 就是 dp[i - 1]
2.2增或删:
- 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i-1][j] + 1
;
- 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i][j-1] + 1;
增和删是一样的,word2添加一个元素,相当于word1删除一个元素
2.3换:dp[i][j] = dp[i - 1][j - 1] + 1;
if (word1[i - 1] == word2[j - 1])的时候操作是 dp[i][j] = dp[i - 1][j - 1] 。那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。
综上,在增删换中取最小的
if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1]; } else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1; }
3.dp数组的初始化
dp[i][0] :
以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
同理dp[0][j] = j;
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i; for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
4.确定遍历顺序
从左到右,从上到下
5.举例推导dp数组
代码实现:
class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];}else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;}}}return dp[word1.size()][word2.size()];}
};
- 时间复杂度: O(n * m)
- 空间复杂度: O(n * m)
本题和动态规划:1143.最长公共子序列基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。
代码如下:
class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));for (int i=1; i<=word1.size(); i++){for (int j=1; j<=word2.size(); j++){if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);}}return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;}
};
三、编辑距离总结篇
题目链接/文章讲解/视频讲解:代码随想录