机器学习-有监督学习-神经网络

目录

  • 线性模型
  • 分类与回归
  • 感知机模型
  • 激活函数
  • 维度诅咒
  • 过拟合和欠拟合
  • 正则
  • 数据增强
  • 数值稳定性
  • 神经网络大家族
    • CNN
    • RNN
    • GNN(图神经网络)
    • GAN

线性模型

  • 向量版本
    y = ⟨ w , x ⟩ + b y = \langle w, x \rangle + b y=w,x+b

分类与回归

  • 懂得两者区别
  • 激活函数,损失函数

感知机模型

  • 感知机模型的本质是线性模型,再加上激活函数
  • 训练数据、损失函数、梯度下降,小批量梯度下降
  • 神经网络算法整体流程:
  1. 初始化网络
  2. 前向传播
  3. 计算损失
  4. 计算微分
  5. 梯度下降
  6. 反向传播
  7. 多轮迭代
Created with Raphaël 2.3.0 开始 初始化函数 前向传播 计算损失 计算微分 梯度下降 反向传播 迭代完成? 结束 yes no

激活函数

  • 给模型加入拟合非线性功能
  • 常见激活函数:
    • Sigmoid 0-1 二分类
    • Tanh -1-1
    • relu:公认的最好用的激活函数之一

维度诅咒

  • 神经网络可以很轻松的对隐藏层进行升降维
  • 升维后密度呈现指数形式逐渐下降,维度太大会过拟合

过拟合和欠拟合

  • 训练误差:模型在训练集上的误差
  • 泛化误差:模型在同样从原始样本的分布中抽取的无限多数据样本时模型误差的期望。现实世界不可能有无限多数据,所以只能将模型应用于独立的测试集来估计泛化误差。
  • 过拟合:训练误差小,泛化误差大。
  • 欠拟合:训练误差大,泛化误差大。
  • 解决过拟合:
    • 正则化:减少参数的大小
    • 数据增强:对原始数据做变化增加数据量
    • 降维:特征选择
    • 集成学习:多个模型集成在一起
    • 早停法:监控训练集和验证集的错误率
  • 解决欠拟合:
    • 添加新特征
    • 增加模型复杂度
    • 减少正则化系数

正则

  • 正则:约束模型复杂度来防止过拟合现象的一种手段。模型复杂度是由模型参数量大小和参数的可取值范围共同决定的。
  • 正则两个方向:约束模型参数量(dropout),约束模型取值范围(weight decay)
  • 利用均方范数作为硬性和软性限制
  • 衡量模型好坏可以看方差和偏差
\低方差高方差
低偏差预测准,且较集中预测准,但较分散
高偏差预测不准,且较集中预测不准,且比较分散

在这里插入图片描述

  • L1正则化:使参数稀疏化
    损失函数 = 原始损失函数 + λ 2 m ∑ i = 1 n ∣ w i ∣ \text{损失函数} = \text{原始损失函数} + \frac{\lambda}{2m}\sum_{i=1}^{n} |w_i| 损失函数=原始损失函数+2mλi=1nwi

  • L2正则化:降低参数范围
    损失函数 = 原始损失函数 + λ 2 m ∑ i = 1 n w i 2 \text{损失函数} = \text{原始损失函数} + \frac{\lambda}{2m} \sum_{i=1}^{n} w_i^2 损失函数=原始损失函数+2mλi=1nwi2

  • Dropout 对神经网络的节点进行随机的失活,训练时失活,预测是全部节点

  • 集成学习是打比赛进行提点的一个很重要的方法

数据增强

  • 成功的机器学习应用不是拥有最好的算法,而是拥有最多的数据!
  • 当数据到达一定级数后,拥有相近的高准确度。

数值稳定性

  • 计算机视觉,模型很大,数据集要好几万、好几亿。模型不大,要需要上百。
  • 梯度消失
  • 梯度爆炸
  • 解决方法:数据归一化
    • Z-Score归一化
    • 最大最小归一化
      • 原因:提升模型精度和收敛速度

神经网络大家族

CNN

  • Image Search
  • Image Labeling
  • Image Segmantation
  • Object Detection
  • Object Tracking
  • OCR
  • Video Annotation
  • Recommendation
  • Image Classification
  • Robot perception
  • 以上分类不及1/10

RNN

  • 语法语义分析
  • 信息检索
  • 自动文摘
  • 文本数据挖掘
  • 自动问答
  • 机器翻译
  • 知识图谱
  • 情感分析
  • 文本相似度
  • 文本纠错
    原理:下一层的输入不仅和原始输入有关,还和之前的输出有关

GNN(图神经网络)

  • 芯片设计
  • 场景分析与问题推理
  • 推荐系统
  • 欺诈检测与风控相关
  • 知识图谱
  • 道路交通的流量预测
  • 自动驾驶(无人机等场景)
  • 化学,医疗等场景
  • 生物,制药等场景
  • 社交网络

原理:图节点,边和整体进行训练

GAN

  • 图像超分辨率
  • 艺术创作
  • 图像到图像的翻译(风格迁移)
  • 文本到图像的翻译
  • 图片编辑
  • 服装翻译
  • 照片表情符号
  • 图片融合
  • 图片修补

原理:生成器和判别器

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/158270.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

编译linux的设备树

使用make dtbs命令时 在arch/arm 的目录Makefile文件中有 boot : arch/arm/boot prepare 和scripts是空的 在文件scripts/Kbuild.include中 变量build : -f $(srctree)/scripts/Makefile.build obj 在顶层Makefile中 $(srctree):. 展开后-f ./scripts/Mak…

C++-Mongoose(3)-http-server-https-restful

1.url 结构 2.http和 http-restful区别在于对于mg_tls_opts的赋值 2.1 http和https 区分 a) port地址 static const char *s_http_addr "http://0.0.0.0:8000"; // HTTP port static const char *s_https_addr "https://0.0.0.0:8443"; // HTTP…

虹科分享 | MACsec-先进的车载网络安全解决方案

方案概要 Media Access Control Security(简称 MACsec)是以太网上最先进的安全解决方案。它为以太网上传输的几乎所有帧提供完整性保护、重放保护和可选的机密性保护。与其他解决方案相比,包括了单播、组播和广播消息以及在第2层上运行的所有…

crontab报错/var/spool/cron : Permission denied和 -bash: chattr: command not found

crontab报错/var/spool/cron : Permission denied和 -bash: chattr: command not found 1、第一种情况2、第二种情况3、第三种情况 1、第一种情况 centos7下修改定时任务crontab -e的时候,控制台输出“crontab: installing new crontab”,表示任务添加成…

学习记忆——数学篇——案例——代数——不等式——一元二次不等式

重点记忆法 归类记忆法 解一元二次不等式的步骤 1.先化成标准型&#xff1a; a x 2 b x c > 0 ( 或 < 0 ) ax^2bxc>0(或<0) ax2bxc>0(或<0)&#xff0c;且a >0&#xff1b; 2.计算对应方程的判别式 △ △ △&#xff1b; 3.求对应方程的根&#xff1b…

Generalizable NeRF in ICCV‘23

文章目录 前置知识Generalizable《Enhancing NeRF akin to Enhancing LLMs: Generalizable NeRF Transformer with Mixture-of-View-Experts》《WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields》NeO 360: Neural Fields for Sparse View Synthesis of Outdoor …

PyTorch模型INT8量化基础

PyTorch模型INT8量化基础 最基础的Tensor量化校准两种不同的量化方案每张量和每通道量化方案量化后端引擎配置QConfigTensor量化Post Training Static Quantization (训练后静态量化)fuse_model:融合网络中的一些层 设置qCONFIGprepare: 定标 &#xff1a;scale 和 zero_point喂…

竞赛 深度学习+opencv+python实现车道线检测 - 自动驾驶

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数&#xff1a;3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV56 数据集处理7 模型训练8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &am…

opencv图像卷积操作和常用的图像滤波函数

文章目录 opencv图像卷积操作原理&#xff0c;opencv中常用的图像滤波函数一、图像卷积操作原理&#xff1a;1、卷积操作原理图&#xff1a; 二、opencv常用的图像滤波函数&#xff1a;这些函数的主要作用是对图像进行平滑处理或去除噪声(核心目的是减少图像中的噪声&#xff0…

Kafka保证消息幂等以及解决方案

1、幂等的基本概念 幂等简单点讲&#xff0c;就是用户对于同一操作发起的一次请求或者多次请求的结果是一致的&#xff0c;不会产生任何副作用。幂等分很多种&#xff0c;比如接口的幂等、消息的幂等&#xff0c;它是分布式系统设计时必须要考虑的一个方面。 查询操作(天然幂等…

【微服务部署】七、使用Docker安装Nginx并配置免费的SSL证书步骤详解

SSL&#xff08;Secure Socket Layer&#xff0c;安全套接字层&#xff09;证书是一种数字证书&#xff0c;用于加密网站与访问者之间的数据传输。SSL证书是网站安全和可靠性的重要保证&#xff0c;是建立信任和保护用户隐私的重要手段。其作用可以总结为以下几点&#xff1a; …

论文阅读:ECAPA-TDNN

1. 提出ECAPA-TDNN架构 TDNN本质上是1维卷积&#xff0c;而且常常是1维膨胀卷积&#xff0c;这样的一种结构非常注重context&#xff0c;也就是上下文信息&#xff0c;具体而言&#xff0c;是在frame-level的变换中&#xff0c;更多地利用相邻frame的信息&#xff0c;甚至跳过…

家政服务小程序,家政维修系统,专业家政软件开发商;家政服务小程序,家政行业软件开发

家政服务小程序&#xff0c;家政维修系统&#xff0c;专业家政软件开发商&#xff1b; 家政服务小程序&#xff0c;家政行业软件开发解决方案&#xff0c;家政软件经验丰富实践&#xff0c;系统高度集成&#xff0c;提供师傅端、用户端、… 家政服务app开发架构有 1、后台管理端…

竞赛选题 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别

文章目录 0 前言1 课题背景2 具体实现3 数据收集和处理3 卷积神经网络2.1卷积层2.2 池化层2.3 激活函数&#xff1a;2.4 全连接层2.5 使用tensorflow中keras模块实现卷积神经网络 4 MobileNetV2网络5 损失函数softmax 交叉熵5.1 softmax函数5.2 交叉熵损失函数 6 优化器SGD7 学…

Ajax使用流程

Ajax在不刷新页面的情况下&#xff0c;进行页面局部更新。 Ajax使用流程&#xff1a; 创建XmlHttpReqeust对象发送Ajax请求处理服务器响应 1. 创建XmlHttpReqeust对象 XmlHttpReqeust对象是Ajax的核心&#xff0c;使用该对象发起请求&#xff0c;接收响应 不同的浏览器创建…

KUKA机器人如何强制输出或取消数字IO信号?

KUKA机器人如何强制输出或取消数字IO信号? 具体的操作方法和步骤可参考以下内容: 如下图所示,点击菜单—显示—输入/输出端,如下图所示,选择想要查看的信号,这里以数字输出端为例进行说明, 如下图所示,此时可以看到输出端信号的编号、名称和当前值,可以通过下拉滚动条…

链路层2:交换机的MAC地址表和端口聚合

交换机的MAC地址表 对于网络交换机来说&#xff0c;MAC地址表是其能否正确转发数据包的关键&#xff0c;为此&#xff0c;协议标准RFC2285和RFC 2889中都对以太网交换机的MAC地址表和MAC地址学习进行专门的描述。MAC地址表显示了主机的MAC地址与以太网交换机端口映射关系&#…

京东运营数据分析:2023年中秋大闸蟹市场销售数据分析

双节也带不动大闸蟹市场&#xff1f; 早在放假前&#xff0c;各界消息都称今年是大闸蟹的丰收年。一方面&#xff0c;今年受到台风影响较少&#xff0c;整体气温适合大闸蟹生长&#xff1b;另一方面&#xff0c;蟹苗选育手段也在不断精进。因此今年大闸蟹产量预计会有明显提升…

prostate数据集下载

1. prostatex 下载地址&#xff1a;https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId23691656 比赛&#xff1a;https://prostatex.grand-challenge.org/ 这个下载的是一个tcia文件&#xff0c;参考这篇文章打开该文件 2. promise12 地址&#xff1a;…

[电源选项]没有系统散热方式,没有被动散热选项

背景 笔记本的风扇声音太大&#xff0c;想改成被动散热方式&#xff0c;又不想影响性能。 于是我打开了控制面板\所有控制面板项\电源选项&#xff0c;点更改计划设置-> 更改高级电源设置。 想把散热方式改成被动散热。发现win11中好像没有这个选项了&#xff01; 如何…