前言
最初是想学习一下Spark提交流程的源码,比如 Spark On Yarn 、Standalone。之前只是通过网上总结的文章大概了解整体的提交流程,但是每个文章描述的又不太一样,弄不清楚到底哪个说的准确,比如Client 和 CLuster 模式的区别,Driver到底是干啥的,是如何定义的,为了彻底弄清楚这些疑问,所以决定学习一下相关的源码。因为不管是服务启动还是应用程序启动,都是通过脚本提交的,所以我们先从分析脚本开始。
版本
Spark 3.2.3
Spark 脚本
先看一下Spark 主要的脚本有哪些:spark-submit、spark-sql、spark-shell、spark-class、start-all.sh、stop-all.sh、start-master.sh、start-workers.sh 等。
spark-sql
if [ -z "${SPARK_HOME}" ]; thensource "$(dirname "$0")"/find-spark-home
fiexport _SPARK_CMD_USAGE="Usage: ./bin/spark-sql [options] [cli option]"
exec "${SPARK_HOME}"/bin/spark-submit --class org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver "$@"
通过 spark-submit 提交类 org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver
spark-shell
# Shell script for starting the Spark Shell REPLcygwin=false
case "$(uname)" inCYGWIN*) cygwin=true;;
esac# Enter posix mode for bash
set -o posixif [ -z "${SPARK_HOME}" ]; thensource "$(dirname "$0")"/find-spark-home
fiexport _SPARK_CMD_USAGE="Usage: ./bin/spark-shell [options]Scala REPL options:-I <file> preload <file>, enforcing line-by-line interpretation"# SPARK-4161: scala does not assume use of the java classpath,
# so we need to add the "-Dscala.usejavacp=true" flag manually. We
# do this specifically for the Spark shell because the scala REPL
# has its own class loader, and any additional classpath specified
# through spark.driver.extraClassPath is not automatically propagated.
SPARK_SUBMIT_OPTS="$SPARK_SUBMIT_OPTS -Dscala.usejavacp=true"function main() {if $cygwin; then# Workaround for issue involving JLine and Cygwin# (see http://sourceforge.net/p/jline/bugs/40/).# If you're using the Mintty terminal emulator in Cygwin, may need to set the# "Backspace sends ^H" setting in "Keys" section of the Mintty options# (see https://github.com/sbt/sbt/issues/562).stty -icanon min 1 -echo > /dev/null 2>&1export SPARK_SUBMIT_OPTS="$SPARK_SUBMIT_OPTS -Djline.terminal=unix""${SPARK_HOME}"/bin/spark-submit --class org.apache.spark.repl.Main --name "Spark shell" "$@"stty icanon echo > /dev/null 2>&1elseexport SPARK_SUBMIT_OPTS"${SPARK_HOME}"/bin/spark-submit --class org.apache.spark.repl.Main --name "Spark shell" "$@"fi
}# Copy restore-TTY-on-exit functions from Scala script so spark-shell exits properly even in
# binary distribution of Spark where Scala is not installed
exit_status=127
saved_stty=""# restore stty settings (echo in particular)
function restoreSttySettings() {stty $saved_sttysaved_stty=""
}function onExit() {if [[ "$saved_stty" != "" ]]; thenrestoreSttySettingsfiexit $exit_status
}# to reenable echo if we are interrupted before completing.
trap onExit INT# save terminal settings
saved_stty=$(stty -g 2>/dev/null)
# clear on error so we don't later try to restore them
if [[ ! $? ]]; thensaved_stty=""
fimain "$@"# record the exit status lest it be overwritten:
# then reenable echo and propagate the code.
exit_status=$?
onExit
这里的主要逻辑也是用 spark-submit 提交类 org.apache.spark.repl.Main
spark-submit
根据上面的分析:spark-sql 和 spark-shell 两个交互式命令行脚本都是通过 spark-submit --class ClassName 来实现的。
if [ -z "${SPARK_HOME}" ]; thensource "$(dirname "$0")"/find-spark-home
fi# disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
逻辑比较清晰:通过 spark-class 提交 org.apache.spark.deploy.SparkSubmit
具体到 spark-sql 和 spark-shell 分别为:
/opt/dkl/spark-3.2.3-bin-hadoop3.2/bin/spark-class org.apache.spark.deploy.SparkSubmit --class org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver
/opt/dkl/spark-3.2.3-bin-hadoop3.2/bin/spark-class org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main --name Spark shell
start-all.sh
功能:启动 standalone 所有服务。相关配置可参考 Spark Standalone 集群配置
# Start all spark daemons.
# Starts the master on this node.
# Starts a worker on each node specified in conf/workersif [ -z "${SPARK_HOME}" ]; thenexport SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"
fi# Load the Spark configuration
. "${SPARK_HOME}/sbin/spark-config.sh"# Start Master
"${SPARK_HOME}/sbin"/start-master.sh# Start Workers
"${SPARK_HOME}/sbin"/start-workers.sh
主要逻辑:start-master.sh 启动 master、start-workers.sh 启动所有worker
start-master.sh
# Starts the master on the machine this script is executed on.if [ -z "${SPARK_HOME}" ]; thenexport SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"
fi# NOTE: This exact class name is matched downstream by SparkSubmit.
# Any changes need to be reflected there.
CLASS="org.apache.spark.deploy.master.Master"if [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; thenecho "Usage: ./sbin/start-master.sh [options]"pattern="Usage:"pattern+="\|Using Spark's default log4j profile:"pattern+="\|Started daemon with process name"pattern+="\|Registered signal handler for""${SPARK_HOME}"/bin/spark-class $CLASS --help 2>&1 | grep -v "$pattern" 1>&2exit 1
fiORIGINAL_ARGS="$@". "${SPARK_HOME}/sbin/spark-config.sh". "${SPARK_HOME}/bin/load-spark-env.sh"if [ "$SPARK_MASTER_PORT" = "" ]; thenSPARK_MASTER_PORT=7077
fiif [ "$SPARK_MASTER_HOST" = "" ]; thencase `uname` in(SunOS)SPARK_MASTER_HOST="`/usr/sbin/check-hostname | awk '{print $NF}'`";;(*)SPARK_MASTER_HOST="`hostname -f`";;esac
fiif [ "$SPARK_MASTER_WEBUI_PORT" = "" ]; thenSPARK_MASTER_WEBUI_PORT=8080
fi"${SPARK_HOME}/sbin"/spark-daemon.sh start $CLASS 1 \--host $SPARK_MASTER_HOST --port $SPARK_MASTER_PORT --webui-port $SPARK_MASTER_WEBUI_PORT \$ORIGINAL_ARGS
主要逻辑:由 spark-daemon.sh 启动类 org.apache.spark.deploy.master.Master
具体的参数:/opt/dkl/spark-3.2.3-bin-hadoop3.2/sbin/spark-daemon.sh start org.apache.spark.deploy.master.Master 1 --host indata-10-110-8-199.indata.com --port 7077 --webui-port 8080
start-workers.sh
if [ -z "${SPARK_HOME}" ]; thenexport SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"
fi. "${SPARK_HOME}/sbin/spark-config.sh"
. "${SPARK_HOME}/bin/load-spark-env.sh"# Find the port number for the master
if [ "$SPARK_MASTER_PORT" = "" ]; thenSPARK_MASTER_PORT=7077
fiif [ "$SPARK_MASTER_HOST" = "" ]; thencase `uname` in(SunOS)SPARK_MASTER_HOST="`/usr/sbin/check-hostname | awk '{print $NF}'`";;(*)SPARK_MASTER_HOST="`hostname -f`";;esac
fi# Launch the workers
"${SPARK_HOME}/sbin/workers.sh" cd "${SPARK_HOME}" \; "${SPARK_HOME}/sbin/start-worker.sh" "spark://$SPARK_MASTER_HOST:$SPARK_MASTER_PORT"
配置host和端口,然后调用 workers.sh 参数是 cd "${SPARK_HOME}"
; "${SPARK_HOME}
/sbin/start-worker.sh" “spark://$SPARK_MASTER_HOST
:$SPARK_MASTER_PORT
”
具体的参数:cd /opt/dkl/spark-3.2.3-bin-hadoop3.2 ; /opt/dkl/spark-3.2.3-bin-hadoop3.2/sbin/start-worker.sh spark://indata-10-110-8-199.indata.com:7077
workers.sh
# Run a shell command on all worker hosts.
#
# Environment Variables
#
# SPARK_WORKERS File naming remote hosts.
# Default is ${SPARK_CONF_DIR}/workers.
# SPARK_CONF_DIR Alternate conf dir. Default is ${SPARK_HOME}/conf.
# SPARK_WORKER_SLEEP Seconds to sleep between spawning remote commands.
# SPARK_SSH_OPTS Options passed to ssh when running remote commands.
##usage="Usage: workers.sh [--config <conf-dir>] command..."# if no args specified, show usage
if [ $# -le 0 ]; thenecho $usageexit 1
fiif [ -z "${SPARK_HOME}" ]; thenexport SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"
fi. "${SPARK_HOME}/sbin/spark-config.sh"# If the workers file is specified in the command line,
# then it takes precedence over the definition in
# spark-env.sh. Save it here.
if [ -f "$SPARK_WORKERS" ]; thenHOSTLIST=`cat "$SPARK_WORKERS"`
fi
if [ -f "$SPARK_SLAVES" ]; then>&2 echo "SPARK_SLAVES is deprecated, use SPARK_WORKERS"HOSTLIST=`cat "$SPARK_SLAVES"`
fi# Check if --config is passed as an argument. It is an optional parameter.
# Exit if the argument is not a directory.
if [ "$1" == "--config" ]
thenshiftconf_dir="$1"if [ ! -d "$conf_dir" ]thenecho "ERROR : $conf_dir is not a directory"echo $usageexit 1elseexport SPARK_CONF_DIR="$conf_dir"fishift
fi. "${SPARK_HOME}/bin/load-spark-env.sh"if [ "$HOSTLIST" = "" ]; thenif [ "$SPARK_SLAVES" = "" ] && [ "$SPARK_WORKERS" = "" ]; thenif [ -f "${SPARK_CONF_DIR}/workers" ]; thenHOSTLIST=`cat "${SPARK_CONF_DIR}/workers"`elif [ -f "${SPARK_CONF_DIR}/slaves" ]; thenHOSTLIST=`cat "${SPARK_CONF_DIR}/slaves"`elseHOSTLIST=localhostfielseif [ -f "$SPARK_WORKERS" ]; thenHOSTLIST=`cat "$SPARK_WORKERS"`fiif [ -f "$SPARK_SLAVES" ]; then>&2 echo "SPARK_SLAVES is deprecated, use SPARK_WORKERS"HOSTLIST=`cat "$SPARK_SLAVES"`fifi
fi# By default disable strict host key checking
if [ "$SPARK_SSH_OPTS" = "" ]; thenSPARK_SSH_OPTS="-o StrictHostKeyChecking=no"
fi
# 这里通过sed 将host # 后面的删除
# 遍历 HOSTLIST ,ssh 到每个host节点,执行 start-workers.sh 中的参数
# 备注:$@:传递给脚本或函数的所有参数
for host in `echo "$HOSTLIST"|sed "s/#.*$//;/^$/d"`; doif [ -n "${SPARK_SSH_FOREGROUND}" ]; thenssh $SPARK_SSH_OPTS "$host" $"${@// /\\ }" \2>&1 | sed "s/^/$host: /"elsessh $SPARK_SSH_OPTS "$host" $"${@// /\\ }" \2>&1 | sed "s/^/$host: /" &fiif [ "$SPARK_WORKER_SLEEP" != "" ]; thensleep $SPARK_WORKER_SLEEPfiif [ "$SPARK_SLAVE_SLEEP" != "" ]; then>&2 echo "SPARK_SLAVE_SLEEP is deprecated, use SPARK_WORKER_SLEEP"sleep $SPARK_SLAVE_SLEEPfi
donewait
主要逻辑:
- 先获取 HOSTLIST,优先级
$SPARK_WORKERS
、$SPARK_SLAVES
、${SPARK_CONF_DIR}
/workers、${SPARK_CONF_DIR}
/slaves,一般我们在 conf/workers (Spark3 默认) 或者 conf/slaves (Spark2 默认) 里配置 worker的 ip 或者hostname,如果没有配置,则默认 localhost - 获取 SPARK_SSH_OPTS ,默认 “-o StrictHostKeyChecking=no” ,如果有特殊需求,如端口号不是默认的 22,则可以在 spark-env.sh 中添加 export SPARK_SSH_OPTS=“-p 6233 -o StrictHostKeyChecking=no”
- 遍历 HOSTLIST , ssh 到每个host节点,执行上面 start-workers.sh 中的参数 cd “
${SPARK_HOME}
” ; “${SPARK_HOME}
/sbin/start-worker.sh” “spark://$SPARK_MASTER_HOST
:$SPARK_MASTER_PORT
”。备注:$@:传递给脚本或函数的所有参数
start-worker.sh
# Starts a worker on the machine this script is executed on.
#
# Environment Variables
#
# SPARK_WORKER_INSTANCES The number of worker instances to run on this
# worker. Default is 1. Note it has been deprecate since Spark 3.0.
# SPARK_WORKER_PORT The base port number for the first worker. If set,
# subsequent workers will increment this number. If
# unset, Spark will find a valid port number, but
# with no guarantee of a predictable pattern.
# SPARK_WORKER_WEBUI_PORT The base port for the web interface of the first
# worker. Subsequent workers will increment this
# number. Default is 8081.if [ -z "${SPARK_HOME}" ]; thenexport SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"
fi# NOTE: This exact class name is matched downstream by SparkSubmit.
# Any changes need to be reflected there.
CLASS="org.apache.spark.deploy.worker.Worker"if [[ $# -lt 1 ]] || [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; thenecho "Usage: ./sbin/start-worker.sh <master> [options]"pattern="Usage:"pattern+="\|Using Spark's default log4j profile:"pattern+="\|Started daemon with process name"pattern+="\|Registered signal handler for""${SPARK_HOME}"/bin/spark-class $CLASS --help 2>&1 | grep -v "$pattern" 1>&2exit 1
fi. "${SPARK_HOME}/sbin/spark-config.sh". "${SPARK_HOME}/bin/load-spark-env.sh"# First argument should be the master; we need to store it aside because we may
# need to insert arguments between it and the other arguments
MASTER=$1
shift# Determine desired worker port
if [ "$SPARK_WORKER_WEBUI_PORT" = "" ]; thenSPARK_WORKER_WEBUI_PORT=8081
fi# Start up the appropriate number of workers on this machine.
# quick local function to start a worker
function start_instance {WORKER_NUM=$1shiftif [ "$SPARK_WORKER_PORT" = "" ]; thenPORT_FLAG=PORT_NUM=elsePORT_FLAG="--port"PORT_NUM=$(( $SPARK_WORKER_PORT + $WORKER_NUM - 1 ))fiWEBUI_PORT=$(( $SPARK_WORKER_WEBUI_PORT + $WORKER_NUM - 1 ))"${SPARK_HOME}/sbin"/spark-daemon.sh start $CLASS $WORKER_NUM \--webui-port "$WEBUI_PORT" $PORT_FLAG $PORT_NUM $MASTER "$@"
}if [ "$SPARK_WORKER_INSTANCES" = "" ]; thenstart_instance 1 "$@"
elsefor ((i=0; i<$SPARK_WORKER_INSTANCES; i++)); dostart_instance $(( 1 + $i )) "$@"done
fi
主要逻辑:
- 获取 MASTER ,这里为 spark://indata-10-110-8-199.indata.com:7077
- 判断 SPARK_WORKER_INSTANCES 是否为空,默认为空,也就是默认一个 Worker 实例
- 调用 start_instance 1 “
$@
” ,主要逻辑计算每个示例的 PORT_NUM 和 WEBUI_PORT ,最后执行 “${SPARK_HOME}
/sbin”/spark-daemon.sh start$CLASS
$WORKER_NUM
--webui-port “$WEBUI_PORT
”$PORT_FLAG
$PORT_NUM
$MASTER
“$@
”
具体的参数:/opt/dkl/spark-3.2.3-bin-hadoop3.2/sbin/spark-daemon.sh start org.apache.spark.deploy.worker.Worker 1 --webui-port 8081 spark://indata-10-110-8-199.indata.com:7077
spark-daemon.sh
根据上面的分析:master 和 worker 都是通过 spark-daemon.sh 来启动的。
# Runs a Spark command as a daemon.
#
# Environment Variables
#
# SPARK_CONF_DIR Alternate conf dir. Default is ${SPARK_HOME}/conf.
# SPARK_LOG_DIR Where log files are stored. ${SPARK_HOME}/logs by default.
# SPARK_LOG_MAX_FILES Max log files of Spark daemons can rotate to. Default is 5.
# SPARK_MASTER host:path where spark code should be rsync'd from
# SPARK_PID_DIR The pid files are stored. /tmp by default.
# SPARK_IDENT_STRING A string representing this instance of spark. $USER by default
# SPARK_NICENESS The scheduling priority for daemons. Defaults to 0.
# SPARK_NO_DAEMONIZE If set, will run the proposed command in the foreground. It will not output a PID file.
##usage="Usage: spark-daemon.sh [--config <conf-dir>] (start|stop|submit|status) <spark-command> <spark-instance-number> <args...>"# if no args specified, show usage
if [ $# -le 1 ]; thenecho $usageexit 1
fiif [ -z "${SPARK_HOME}" ]; thenexport SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"
fi. "${SPARK_HOME}/sbin/spark-config.sh"# get arguments# Check if --config is passed as an argument. It is an optional parameter.
# Exit if the argument is not a directory.
# 判断有没有参数 --config ,如果有,则配置 SPARK_CONF_DIR 等于参数值,默认 ${SPARK_HOME}/conf
if [ "$1" == "--config" ]
thenshiftconf_dir="$1"if [ ! -d "$conf_dir" ]thenecho "ERROR : $conf_dir is not a directory"echo $usageexit 1elseexport SPARK_CONF_DIR="$conf_dir"fishift
fi
# 获取 option ,可选值 start|stop|submit|status ,start-master 和 start-worker 对应的都为 start
option=$1
shift
# 获取 command , 这里的值对应具体的 class , start-master 对应 org.apache.spark.deploy.master.Master
# start-worker 对应 org.apache.spark.deploy.worker.Worker
command=$1
shift
# 获取 instance , 这里的值均为 1 , 注意这里的 instance 是前面传过来的参数,实例数,为了给后面的 log、pid用。
instance=$1
shiftspark_rotate_log ()
{log=$1;if [[ -z ${SPARK_LOG_MAX_FILES} ]]; thennum=5elif [[ ${SPARK_LOG_MAX_FILES} -gt 0 ]]; thennum=${SPARK_LOG_MAX_FILES}elseecho "Error: SPARK_LOG_MAX_FILES must be a positive number, but got ${SPARK_LOG_MAX_FILES}"exit -1fiif [ -f "$log" ]; then # rotate logswhile [ $num -gt 1 ]; doprev=`expr $num - 1`[ -f "$log.$prev" ] && mv "$log.$prev" "$log.$num"num=$prevdonemv "$log" "$log.$num";fi
}. "${SPARK_HOME}/bin/load-spark-env.sh"if [ "$SPARK_IDENT_STRING" = "" ]; thenexport SPARK_IDENT_STRING="$USER"
fiexport SPARK_PRINT_LAUNCH_COMMAND="1"# get log directory
if [ "$SPARK_LOG_DIR" = "" ]; thenexport SPARK_LOG_DIR="${SPARK_HOME}/logs"
fi
mkdir -p "$SPARK_LOG_DIR"
touch "$SPARK_LOG_DIR"/.spark_test > /dev/null 2>&1
TEST_LOG_DIR=$?
if [ "${TEST_LOG_DIR}" = "0" ]; thenrm -f "$SPARK_LOG_DIR"/.spark_test
elsechown "$SPARK_IDENT_STRING" "$SPARK_LOG_DIR"
fiif [ "$SPARK_PID_DIR" = "" ]; thenSPARK_PID_DIR=/tmp
fi# some variables
# 配置 log、pid 的文件路径和文件名 。log 默认路径 ${SPARK_HOME}/logs , pid 默认路径 /tmp
log="$SPARK_LOG_DIR/spark-$SPARK_IDENT_STRING-$command-$instance-$HOSTNAME.out"
pid="$SPARK_PID_DIR/spark-$SPARK_IDENT_STRING-$command-$instance.pid"# Set default scheduling priority
# 设置 SPARK_NICENESS :守护进程的调度优先级,如果 SPARK_NICENESS 为空,则设置默认值为0
# 注意这里的 SPARK_NICENESS 与前面的 instance 不同
if [ "$SPARK_NICENESS" = "" ]; thenexport SPARK_NICENESS=0
fiexecute_command() {# -z 判断 ${SPARK_NO_DAEMONIZE+set} 是否为空,这里为空if [ -z ${SPARK_NO_DAEMONIZE+set} ]; then# 这里主要逻辑是执行 $@ 并将日志输出到对应的日志文件中, $@ : 所有脚本参数的内容# 实际是通过 nice -n 0 设置进程优先级,然后通过 spark-class 启动对应的 Master 和 Worker 类nohup -- "$@" >> $log 2>&1 < /dev/null &# 将上面返回的进程号赋给 newpid($! :Shell最后运行的后台Process的PID)newpid="$!"# 然后将 newpid 写到对应的 pid 文件中。echo "$newpid" > "$pid"# Poll for up to 5 seconds for the java process to start# for 循环 1到10,轮询最多5秒,以启动java进程for i in {1..10}do# 每次判断 newpid 对应的java 进程是否启动成功if [[ $(ps -p "$newpid" -o comm=) =~ "java" ]]; then# 如果启动成功则终止循环breakfi# 否则sleep 0.5 ,继续下次循环sleep 0.5done# 启动成功后,sleep 2秒sleep 2# Check if the process has died; in that case we'll tail the log so the user can see# 判断对应的java进程是否还存在,如果不存在,则提示启动失败,并打印对应的日志if [[ ! $(ps -p "$newpid" -o comm=) =~ "java" ]]; thenecho "failed to launch: $@"tail -10 "$log" | sed 's/^/ /'echo "full log in $log"fielse"$@"fi
}run_command() {# 先获取 mode ,这里 mode 为 class ,mode="$1"shift# 创建 pid 文件夹mkdir -p "$SPARK_PID_DIR"# 判断 pid 文件是否存在if [ -f "$pid" ]; then# 如果存在,则获取pid值TARGET_ID="$(cat "$pid")"# 判断是否存在对应的java进程if [[ $(ps -p "$TARGET_ID" -o comm=) =~ "java" ]]; then# 如果存在,则提示服务已经运行,先停止它echo "$command running as process $TARGET_ID. Stop it first."exit 1fifiif [ "$SPARK_MASTER" != "" ]; thenecho rsync from "$SPARK_MASTER"rsync -a -e ssh --delete --exclude=.svn --exclude='logs/*' --exclude='contrib/hod/logs/*' "$SPARK_MASTER/" "${SPARK_HOME}"fispark_rotate_log "$log"echo "starting $command, logging to $log"# 匹配 mode 值case "$mode" in# 如果是class(class)# nice -n "$SPARK_NICENESS" 是设置进程优先级,范围通常从 -20(最高优先级)到 +19(最低优先级)。默认的 nice 值是 0。# 可参考 https://www.cnblogs.com/yinguojin/p/18600924execute_command nice -n "$SPARK_NICENESS" "${SPARK_HOME}"/bin/spark-class "$command" "$@";;(submit)execute_command nice -n "$SPARK_NICENESS" bash "${SPARK_HOME}"/bin/spark-submit --class "$command" "$@";;(*)echo "unknown mode: $mode"exit 1;;esac}
# 匹配 option ,
case $option in# 如果为 submit ,执行 run_command submit "$@"(submit)run_command submit "$@";;# 如果为 start, 执行 run_command class "$@"(start)run_command class "$@";;(stop)if [ -f $pid ]; thenTARGET_ID="$(cat "$pid")"if [[ $(ps -p "$TARGET_ID" -o comm=) =~ "java" ]]; thenecho "stopping $command"kill "$TARGET_ID" && rm -f "$pid"elseecho "no $command to stop"fielseecho "no $command to stop"fi;;(decommission)if [ -f $pid ]; thenTARGET_ID="$(cat "$pid")"if [[ $(ps -p "$TARGET_ID" -o comm=) =~ "java" ]]; thenecho "decommissioning $command"kill -s SIGPWR "$TARGET_ID"elseecho "no $command to decommission"fielseecho "no $command to decommission"fi;;(status)if [ -f $pid ]; thenTARGET_ID="$(cat "$pid")"if [[ $(ps -p "$TARGET_ID" -o comm=) =~ "java" ]]; thenecho $command is running.exit 0elseecho $pid file is present but $command not runningexit 1fielseecho $command not running.exit 2fi;;(*)echo $usageexit 1;;esac
主要逻辑:
- 判断有没有参数 --config ,如果有,则配置 SPARK_CONF_DIR 等于参数值,默认 ${SPARK_HOME}/conf
- 获取 option ,可选值 start|stop|submit|status ,start-master 和 start-worker 对应的都为 start
- 获取 command , 这里的值对应具体的 class , start-master 对应 org.apache.spark.deploy.master.Master ,start-worker 对应 org.apache.spark.deploy.worker.Worker
- 获取 instance , 这里的值均为 1 , 实例数,为了给后面的 log、pid用。
- 配置 log、pid 的文件路径和文件名 。log 默认路径 ${SPARK_HOME}/logs , pid 默认路径 /tmp
- 设置 SPARK_NICENESS :守护进程的调度优先级,如果 SPARK_NICENESS 为空,则设置默认值为0 。
- 匹配 option ,如果为 submit ,执行 run_command submit “
$@
” ;如果为 start, 执行 run_command class “$@
” ; …… ,这里只看 start - run_command 逻辑:
- 先获取 mode ,这里 mode 为 class ,
- 创建 pid 文件夹, 判断 pid 文件是否存在,如果存在,则获取pid值并判断是否存在对应的java进程,如果存在,则提示服务已经运行,先停止它
- 如果不存在,则匹配 mode 值,如果是class ,则执行 execute_command nice -n “
$SPARK_NICENESS
” “${SPARK_HOME}
”/bin/spark-class “$command
” “$@
” - execute_command 是这里自定义的函数, nice -n “$SPARK_NICENESS” 是设置进程优先级,范围通常从 -20(最高优先级)到 +19(最低优先级)。默认的 nice 值是 0。可参考 https://www.cnblogs.com/yinguojin/p/18600924
- execute_command 逻辑 :
- -z 判断 ${SPARK_NO_DAEMONIZE+set} 是否为空,这里为空
- 执行 nohup – “
$@
” >>$log
2>&1 < /dev/null & ,这里主要逻辑是执行$@
并将日志输出到对应的日志文件中,$@
: 所有脚本参数的内容, 这里为 : nice -n 0 /opt/dkl/spark-3.2.3-bin-hadoop3.2/bin/spark-class org.apache.spark.deploy.master.Master --host indata-10-110-8-199.indata.com --port 7077 --webui-port 8080 和 nice -n 0 /opt/dkl/spark-3.2.3-bin-hadoop3.2/bin/spark-class org.apache.spark.deploy.worker.Worker --webui-port 8081 spark://indata-10-110-8-199.indata.com:7077
实际是通过 nice -n 0 设置进程优先级,然后通过 spark-class 启动对应的 Master 和 Worker 类 - 将上面返回的进程号赋给 newpid ,然后将 newpid 写到对应的 pid 文件中。($! :Shell最后运行的后台Process的PID)
- for 循环 1到10,每次判断 newpid 对应的java 进程是否启动成功,如果启动成功则终止循环,否则sleep 0.5 ,继续下次循环,也就是轮询最多5秒,以启动java进程
- 启动成功后,sleep 2秒,然后判断对应的java进程是否还存在,如果不存在,则提示启动失败,并打印对应的日志
spark-class
通过上面的分析可知:spark-sql、spark-shell、Master 和 Worker 的启动最终都是通过 spark-class 启动的,具体分别为:
/opt/dkl/spark-3.2.3-bin-hadoop3.2/bin/spark-class org.apache.spark.deploy.SparkSubmit --class org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver
/opt/dkl/spark-3.2.3-bin-hadoop3.2/bin/spark-class org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main --name Spark shell
nice -n 0 /opt/dkl/spark-3.2.3-bin-hadoop3.2/bin/spark-class org.apache.spark.deploy.master.Master --host indata-10-110-8-199.indata.com --port 7077 --webui-port 8080
nice -n 0 /opt/dkl/spark-3.2.3-bin-hadoop3.2/bin/spark-class org.apache.spark.deploy.worker.Worker --webui-port 8081 spark://indata-10-110-8-199.indata.com:7077
if [ -z "${SPARK_HOME}" ]; thensource "$(dirname "$0")"/find-spark-home
fi. "${SPARK_HOME}"/bin/load-spark-env.sh# Find the java binary
# 找Java环境变量,如果有,则拼接 ${JAVA_HOME}/bin/java
if [ -n "${JAVA_HOME}" ]; thenRUNNER="${JAVA_HOME}/bin/java"
elseif [ "$(command -v java)" ]; thenRUNNER="java"elseecho "JAVA_HOME is not set" >&2exit 1fi
fi# Find Spark jars.
# 找 Spark jars
if [ -d "${SPARK_HOME}/jars" ]; thenSPARK_JARS_DIR="${SPARK_HOME}/jars"
elseSPARK_JARS_DIR="${SPARK_HOME}/assembly/target/scala-$SPARK_SCALA_VERSION/jars"
fiif [ ! -d "$SPARK_JARS_DIR" ] && [ -z "$SPARK_TESTING$SPARK_SQL_TESTING" ]; thenecho "Failed to find Spark jars directory ($SPARK_JARS_DIR)." 1>&2echo "You need to build Spark with the target \"package\" before running this program." 1>&2exit 1
elseLAUNCH_CLASSPATH="$SPARK_JARS_DIR/*"
fi# Add the launcher build dir to the classpath if requested.
if [ -n "$SPARK_PREPEND_CLASSES" ]; thenLAUNCH_CLASSPATH="${SPARK_HOME}/launcher/target/scala-$SPARK_SCALA_VERSION/classes:$LAUNCH_CLASSPATH"
fi# For tests
if [[ -n "$SPARK_TESTING" ]]; thenunset YARN_CONF_DIRunset HADOOP_CONF_DIR
fi# The launcher library will print arguments separated by a NULL character, to allow arguments with
# characters that would be otherwise interpreted by the shell. Read that in a while loop, populating
# an array that will be used to exec the final command.
#
# The exit code of the launcher is appended to the output, so the parent shell removes it from the
# command array and checks the value to see if the launcher succeeded.
build_command() {# 通过java -cp 提交 org.apache.spark.launcher.Main "$@" , 该类会打印对应的命令# 具体打印 : 先打印'\0'并换行,然后打印拼接的命令,每个命令后跟'\0',不换行。"$RUNNER" -Xmx128m $SPARK_LAUNCHER_OPTS -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@"# 打印上面的命令的退出状态码并后跟一个\0,没有换行printf "%d\0" $?
}# Turn off posix mode since it does not allow process substitution
set +o posix
# 定义CMD数组
CMD=()
# -d : 输入结束符,分隔符
DELIM=$'\n'
# CMD 开始标志,默认false
CMD_START_FLAG="false"
# -r : 反斜杠转义不会生效,意味着行末的’\’成为有效的字符,例如使 \n 成为有效字符而不是换行
# 执行 build_command "$@",并解析其输出结果
# Bash read 命令可以参考 https://blog.csdn.net/lingeio/article/details/96587362
# 先解析完第一行,然后将 CMD_START_FLAG 设置为 true,开始拼接 CMD ,后以 '' 为分隔符分割具体命令,放到CMD数组中。
while IFS= read -d "$DELIM" -r ARG; do# 当 CMD_START_FLAG = true , 拼接 cmd 命令if [ "$CMD_START_FLAG" == "true" ]; thenCMD+=("$ARG")else# 开始以 $'\n' 为结束符, ARG = $'\0'if [ "$ARG" == $'\0' ]; then# After NULL character is consumed, change the delimiter and consume command string.# 修改 DELIM='' ,并将CMD_START_FLAG设置为true,意味着开始拼接 cmd 命令DELIM=''CMD_START_FLAG="true"elif [ "$ARG" != "" ]; thenecho "$ARG"fifi
done < <(build_command "$@")
# CMD数组长度
COUNT=${#CMD[@]}
LAST=$((COUNT - 1))
# 获取CMD最后一个值作为 LAUNCHER_EXIT_CODE
LAUNCHER_EXIT_CODE=${CMD[$LAST]}# Certain JVM failures result in errors being printed to stdout (instead of stderr), which causes
# the code that parses the output of the launcher to get confused. In those cases, check if the
# exit code is an integer, and if it's not, handle it as a special error case.
# 检查 LAUNCHER_EXIT_CODE 是否正常,如果不正常,则进行相应处理并退出
if ! [[ $LAUNCHER_EXIT_CODE =~ ^[0-9]+$ ]]; thenecho "${CMD[@]}" | head -n-1 1>&2exit 1
fiif [ $LAUNCHER_EXIT_CODE != 0 ]; thenexit $LAUNCHER_EXIT_CODE
fi
# 代表从下标0开始往后取 LAST 个值
# 数组用法可参考 https://blog.csdn.net/trayvontang/article/details/143440654
CMD=("${CMD[@]:0:$LAST}")
# 如果正常,则执行 org.apache.spark.launcher.Main 返回的命令
exec "${CMD[@]}"
主要逻辑:
- 找Java环境变量,如果有,则拼接 ${JAVA_HOME}/bin/java
- 执行 build_command “
$@
” ,并打印输出结果。对应命令:“$RUNNER
” -Xmx128m$SPARK_LAUNCHER_OPTS
-cp “$LAUNCH_CLASSPATH
” org.apache.spark.launcher.Main “$@
” 具体为:- spark-sql 对应命令 :/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -Xmx128m -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* org.apache.spark.launcher.Main org.apache.spark.deploy.SparkSubmit --class org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver
- spark-shell 对应命令 :/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -Xmx128m -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* org.apache.spark.launcher.Main org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main --name Spark shell
- start-master 对应命令 :/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -Xmx128m -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* org.apache.spark.launcher.Main org.apache.spark.deploy.master.Master --host indata-10-110-8-199.indata.com --port 7077 --webui-port 8080
- start-worer 对应命令 : /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -Xmx128m -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* org.apache.spark.launcher.Main org.apache.spark.deploy.worker.Worker --webui-port 8081 spark://indata-10-110-8-199.indata.com:7077
- org.apache.spark.launcher.Main 主要逻辑 : 根据传入的参数,拼接命令并打印
最后打印代码如上,先打印’\0’并换行,然后打印拼接的命令,每个命令后跟’\0’,不换行。最后打印的命令分别为:System.out.println('\0'); List<String> bashCmd = prepareBashCommand(cmd, env); for (String c : bashCmd) {System.out.print(c);System.out.print('\0'); }
-
spark-sql :
/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java-cp/opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/*-Xmx1gorg.apache.spark.deploy.SparkSubmit–classorg.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriverspark-internal
一共两行,第一行是空字符串 \0’表示字符串结束符,第二行是具体拼接的命令,每一个命令后跟 ‘\0’ ,因为是空所以没有空格分隔开,第二行最后没有跟换行。后面的命令第一行一样,所以只记录第二行 -
spark-shell :
/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java-cp/opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/*-Dscala.usejavacp=true-Xmx1gorg.apache.spark.deploy.SparkSubmit–classorg.apache.spark.repl.Main–nameSpark shellspark-shell -
start-master :
/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java-cp/opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/*-Xmx1gorg.apache.spark.deploy.master.Master–hostindata-10-110-8-199.indata.com–port7077–webui-port8080 -
start-worker :
/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java-cp/opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/*-Xmx1gorg.apache.spark.deploy.worker.Worker–webui-port8081spark://indata-10-110-8-199.indata.com:7077 -
build_command 最后执行 printf “%d\0”
$?
,这和脚本含义是打印$?
后面再跟 \0 ,$?
是一个特殊的变量,用于获取上一个命令的退出状态码- 0:命令成功执行
- 0以外的数字:命令执行失败。
- 1:通用错误(General error), 发生了一个通用的错误,但没有提供具体的错误信息。
- 2:误用shell内置命令(Misuse of shell built-ins)
- 126:命令不可执行(Command invoked cannot execute)
- 127:未找到命令(Command not found)
所以build_command最终输出:以spark-sql为例:
/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java-cp/opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/-Xmx1gorg.apache.spark.deploy.SparkSubmit–classorg.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriverspark-internal0
\0 输出到日志文件中,以vi命令看,会显示^@,下面是在日志文件中vi查看的效果:
^@
/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java^@
-cp^@
/opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/^@
-Xmx1g^@
org.apache.spark.deploy.SparkSubmit^@
–class^@
org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver^@
spark-internal^@
0^@
这样更能方便的理解 build_command 的输出是啥样的,方便后面的脚本分析,然后我们将 ^@ 换成空格:
/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* -Xmx1g org.apache.spark.deploy.SparkSubmit --class org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver spark-internal 0
-
最后解释一下 printf “%d\0” $? %d 代表数字,该行脚本的含义是将上一个命令的退出状态码打印并后跟一个\0,该命令没有换行,另外测试发现 %d 如果后面没有跟具体数字则默认值为0,可以通过 printf “\0” > test.log , 然后 vi test.log 查看 \0 在文件中会显示 ^@ ,但是cat test.log 则会显示空字符串。
- 后面 while IFS= read -d “
$DELIM
” -r ARG; 是通过 read 命令读取 build_command “$@
” 输出的结果,Bash read 命令可以参考 https://blog.csdn.net/lingeio/article/details/96587362 。 主要逻辑是读取第2步中输出的结果,解析对应的命令并放到 CMD 数组中,首先解析完第一行,然后将 CMD_START_FLAG 设置为 true开始拼接 CMD ,后以 ‘’ 为分隔符分割具体命令,放到CMD数组中。 - 组装好CMD数组后,先取CMD数组长度,获取CMD最后一个值作为 LAUNCHER_EXIT_CODE,即为在 build_command 中 执行 “
$RUNNER
” -Xmx128m$SPARK_LAUNCHER_OPTS
-cp “$LAUNCH_CLASSPATH
” org.apache.spark.launcher.Main “$@
” 的命令退出状态码。 - 检查 LAUNCHER_EXIT_CODE 是否正常,如果不正常,则进行相应处理并退出,如果正常,则执行 org.apache.spark.launcher.Main 返回的命令 。
小结
通过本文上面的简单分析可知,无论是 spark-sql 、 spark-shell 这种交互式命令行,还是 Master 和 Worker 等Stanalone服务的启动,最终都是通过 spark-class 启动的。而 spark-class 的逻辑则是先通过 java -cp 执行类 org.apache.spark.launcher.Main,然后将拼接好的启动命令打印输出,最终在 spark-class 中解析输出的命令并执行,最终也都是通过 java -cp 执行具体的类的,分别如下:
- spark-sql : /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* -Xmx1g org.apache.spark.deploy.SparkSubmit --class org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver spark-internal
- spark-shell : /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* -Dscala.usejavacp=true -Xmx1g org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main --name Spark shell spark-shell
- start-master : /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* -Xmx1g org.apache.spark.deploy.master.Master --host indata-10-110-8-199.indata.com --port 7077 --webui-port 8080
- start-worker : /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* -Xmx1g org.apache.spark.deploy.worker.Worker --webui-port 8081 spark://indata-10-110-8-199.indata.com:7077
当然我们提交程序代码jar也是一样的,比如 spark-submit --master local --class org.apache.spark.examples.SparkPi examples/jars/spark-examples_2.12-3.2.3.jar , 对应到 spark-class 的提交命令为 :
/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.el7.x86_64/bin/java -cp /opt/dkl/spark-3.2.3-bin-hadoop3.2/conf/:/opt/dkl/spark-3.2.3-bin-hadoop3.2/jars/* -Xmx1g org.apache.spark.deploy.SparkSubmit --master local --class org.apache.spark.examples.SparkPi examples/jars/spark-examples_2.12-3.2.3.jar
进一步总结发现,关于服务类的启动都是直接通过 java -cp 提交具体的类,其他的交互式命令行、jar 则是先通过 java -cp 提交 org.apache.spark.deploy.SparkSubmit ,最终具体执行的类则通过 --class 作为参数提交。那么下次我们先分析 org.apache.spark.deploy.SparkSubmit,看看最终真正的 class 是怎么提交运行的。