RootSIFT---SIFT图像特征的扩展

RootSIFT是论文 Three things everyone should know to improve object retrieval - 2012所提出的

在这里插入图片描述
A Comparative Analysis of RootSIFT and SIFT Methods for Drowsy Features Extraction - 2020

当比较直方图时,使用欧氏距离通常比卡方距离或Hellinger核时的性能差,但是在使用 SIFT 特征点为什么一直都使用欧氏距离呢?

不论是对 SIFT 特征点进行匹配,还是对 SIFT 特征集合进行聚类得到视觉词汇表,又或者对图像进行BoW编码,都使用的是欧氏距离. 但是 SIFT 特征描述子本质上也是一种直方图,为什么对 SIFT 特征描述子进行比较的时候要使用欧氏距离呢,有没有一种更精确的比较方法呢?

SIFT 描述子统计的是关键点邻域的梯度直方图.

论文作者认为之所以一直使用欧氏距离来测量 SIFT 特征的相似度,是由于在 SIFT 提出时,使用的是欧氏距离的度量,可以找出一种比较欧氏距离更为精确的度量方法. 故,提出了RootSift 对 SIFT 特征进行扩展.

具体操作如下:

在提取到 SIFT 描述向量 x x x 后,进行如下处理,即可得到 RootSIFT:

[1] - 对特征向量 x x x 进行 l 1 l_1 l1 的归一化得到 x ′ x' x ;

[2] - 对 x ′ x' x的每一个元素求平方根;

[3] - 进行 l 2 l_2 l2归一化.(可选)

  • [3]中,是否进行l2归一化,有些不一致. 在[RootSIFT]论文 中并没有指出需要进行 l2 归一化,但是在 presentation, 却有 l2归一化.

参考:图像检索(4):IF-IDF,RootSift,VLAD – RootSIFT

1. RootSIFT 实现

Python 实现如:

  • https://www.pyimagesearch.com/2015/04/13/implementing-rootsift-in-python-and-opencv/
  • https://github.com/jrosebr1/imutils/blob/master/imutils/feature/rootsift.py
import numpy as np
import cv2class RootSIFT:def __init__(self):# initialize the SIFT feature extractor#OpenCV2.4# self.extractor = cv2.DescriptorExtractor_create("SIFT")#OpenCV3+self.extractor = cv2.xfeatures2d.SIFT_create()def compute(self, image, kps, eps=1e-7):# compute SIFT descriptorskps, descs = self.extractor.compute(image, kps)# if there are no keypoints or descriptors, return an empty tupleif len(kps) == 0:return ([], None)# apply the Hellinger kernel by first L1-normalizing and taking the# square-rootdescs /= (descs.sum(axis=1, keepdims=True) + eps)descs = np.sqrt(descs)#descs /= (np.linalg.norm(descs, axis=1, ord=2) + eps)# return a tuple of the keypoints and descriptorsreturn (kps, descs)
#
image = cv2.imread("test.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# detect Difference of Gaussian keypoints in the image
sift = cv2.xfeatures2d.SIFT_create()
kps, descs = sift.detectAndCompute(img1, None)
print "SIFT: kps=%d, descriptors=%s " % (len(kps), descs.shape)# extract RootSIFT descriptors
root_sift = RootSIFT()
(kps, descs) = root_sift.compute(image, kps)
print "RootSIFT: kps=%d, descriptors=%s " % (len(kps), descs.shape)

C++ 实现:

for(int i = 0; i < siftFeature.rows; i ++)
{// Conver to float typeMat f;siftFeature.row(i).convertTo(f,CV_32FC1);normalize(f,f,1,0,NORM_L1); // l1 normalizesqrt(f,f); // sqrt-root  root-siftrootSiftFeature.push_back(f);
}

2. 基于 RootSIFT 的相似图搜索

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/158538.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

zabbix监控——自定义监控内容

目录 自定义监控项步骤 案例 1、明确需要执行的命令 2、创建 zabbix 的监控项配置文件&#xff0c;用于自定义 key&#xff0c;并重启zabbix-agent2 3、.在服务端验证新建的监控项 4、在 Web 页面创建自定义监控项模板 1&#xff09;创建模板 2&#xff09;创建监控项 …

振弦传感器和无线振弦采集仪在隧道安全监测的解决方案

振弦传感器和无线振弦采集仪在隧道安全监测的解决方案 隧道作为交通工程的重要组成部分&#xff0c;具有极高的安全风险&#xff0c;因此隧道安全监测是必不可少的。振弦传感器和无线振弦采集仪作为隧道安全监测的两种重要设备&#xff0c;能够有效地监测隧道的振动情况&#…

Rancher 使用指南

Rancher 使用指南 Rancher 是什么?Rancher 与 OpenShift / Kubesphere 主要区别对比RancherOpenShiftKubesphere 对比 Rancher 和 OpenShift Rancher 安装 Rancher 是什么? 企业级Kubernetes管理平台 Rancher 是供采用容器的团队使用的完整软件堆栈。它解决了管理多个Kuber…

PIL Image格式转Tensor

Image格式是由PIL库读入的图片格式 from PIL import Image torch.Tensor是用于深度学习计算的张量格式 import torch 1 Image格式转Tensor 先转numpy 再转tensor torch.from_numpy() np.asarray() image torch.from_numpy(np.asarray(image)) 但是报错: max_pool2d” not im…

智能网关IOT 2050采集应用

SIMATIC IOT2050 是西门子公司新推出的应用于企业数字化转型的智能边缘计算和云连接网关。 它将云、公司内 IT 和生产连接在一起&#xff0c;专为直接在生产环境中获取、处理和传输数据的工业 IT 解 决方案而设计。例如&#xff0c;它可用于将生产 过程与基于云的机器和生产数据…

AC修炼计划(AtCoder Regular Contest 166)

传送门&#xff1a;AtCoder Regular Contest 166 - AtCoder 一直修炼cf&#xff0c;觉得遇到了瓶颈了&#xff0c;所以想在atcode上寻求一些突破&#xff0c;今天本来想尝试vp AtCoder Regular Contest 166&#xff0c;但结局本不是很好&#xff0c;被卡了半天&#xff0c;止步…

Vue条件渲染

一、使用v-show条件渲染 语法格式&#xff1a; v-show"表达式" // true 或 false 当表达式的值为true的时候就显示&#xff0c;表达式值为false的时候隐藏。 下面是使用v-show实现的一个点击按钮切换显示和隐藏的小案例 &#xff1a; 值得注意的是&#xff0c;使…

Element Plus阻止 el-dropdown、el-switch等冒泡事件

最近做vue3项目&#xff0c;使用Element Plus,又遇到坑了&#xff01; 问题点&#xff1a;组件中遇到事件冒泡问题了&#xff0c;el-checkbox 中 change事件要求阻止冒泡&#xff0c;如下代码中要求点击checkbox时不调用li标签的show方法 <li click"show()">…

kafka属性说明

kafka中关于一些字段说明 groupId :标识消费者分组id&#xff0c;如果多个消费者id相同&#xff0c;就表示这几个消费者是一组&#xff0c;当一组多个消费者消费同一个topic时&#xff0c;一组中只会有一个成功消费 代码如下 这时只会有一条消息被消费

Net6 用imagesharp 实现跨平台图片处理并存入oss

项目要求&#xff1a;生成电子证书 一、模板文件在OSS中&#xff0c;直接加载 二、向模板文件添加二维码 三、向模板文件添加多行文字 四、生成二维码&#xff0c;存入本地&#xff0c; 五、向模板文件添加二维码 代码实现步骤 一、建立.net 6 API项目&#xff0c;安装N…

城市消防无人机控制系统的设计

目录 摘 要......................................................................................................................... 2 第一章 绪论.............................................................................................................…

【Java 进阶篇】JavaScript 正则表达式(RegExp)详解

JavaScript 正则表达式&#xff0c;通常简写为 RegExp&#xff0c;是一种强大的文本匹配工具&#xff0c;它允许你通过一种灵活的语法来查找和替换字符串中的文本。正则表达式在编程中用途广泛&#xff0c;不仅限于 JavaScript&#xff0c;在许多编程语言中也都有类似的实现。 …

Vue 绑定style和class

在应用界面中&#xff0c;某些元素的样式是动态的。class 与 style 绑定就是专门用来实现动态样式效果的技术。 如果需要动态绑定 class 或 style 样式&#xff0c;可以使用 v-bind 绑定。 绑定 class 样式【字符串写法】 适用于&#xff1a;类名不确定&#xff0c;需要动态指…

ETL数据转换方式有哪些

ETL数据转换方式有哪些 ETL&#xff08;Extract&#xff0c; Transform&#xff0c; Load&#xff09;是一种常用的数据处理方式&#xff0c;用于从源系统中提取数据&#xff0c;进行转换&#xff0c;并加载到目标系统中。 数据清洗&#xff08;Data Cleaning&#xff09;&am…

快手商品详情数据接口,快手商品详情API接口,快手API接口

在网页抓取方面&#xff0c;可以使用 Python、Java 等编程语言编写程序&#xff0c;通过模拟 HTTP 请求&#xff0c;获取快手网站上的商品页面。在数据提取方面&#xff0c;可以使用正则表达式、XPath 等方式从 HTML 代码中提取出有用的信息。值得注意的是&#xff0c;快手网站…

android studio 移植工程

第一步&#xff1a; 第二步&#xff1a;创建 第三步&#xff1a; 第四步&#xff1a;复制文件至替代新工程中的文件 第五步&#xff1a;修改 第六步&#xff1a;编译OK

设计模式 - 行为型模式考点篇:迭代器模式(概述 | 案例实现 | 优缺点 | 使用场景)

目录 一、行为型模式 一句话概括行为型模式 1.1、迭代器模式 1.1.1、概述 1.1.2、案例实现 1.1.3、优缺点 1.1.4、使用场景 一、行为型模式 一句话概括行为型模式 行为型模式&#xff1a;类或对象间如何交互、如何划分职责&#xff0c;从而更好的完成任务. 1.1、迭代器…

基于局部结构特征的图像匹配

目录 第一章 绪论........................................................................ 6 1.1 研究课题背景....................................................... 6 1.2 图像匹配技术国内外发展现状........................... 8 1.3 课题研究的目的......…

芯片学习记录SN74HC14DR

SN74HC14DR 芯片介绍 该设备包含六个独立的逆变器使用施密特触发器输入。每个门执行正逻辑中的布尔函数Y/A("/"表示“非”)。 引脚信息 引脚名称I/O电平功能11AI0~vcc输入21YO0~vcc输出7GND-电源14VCC-3.3v电源&#xff08;2~6V&#xff09;Y/A 推荐使用条件 参数…

微信浏览器大字体模式 按钮文字居中用line-height 显示异常

按钮文字居中用line-height 的css 在微信浏览器大字体模式&#xff0c;会导致显示错误。改成flex 居中就好了