5+非肿瘤分析,分型+WGCNA+机器学习筛选相关基因

今天给同学们分享一篇非肿瘤+分型+机器学习+WGCNA+实验的生信文章“Identification of diagnostic markers related to oxidative stress and inflammatory response in diabetic kidney disease by machine learning algorithms: Evidence from human transcriptomic data and mouse experiments”,这篇文章于2023年3月7日发表在Front Endocrinol (Lausanne)期刊上,影响因子为5.2。
ca68a4128afd3bd534580851fc652ceb.jpeg

糖尿病肾病(DKD)是糖尿病的长期并发症,引起肾脏微血管病变。它也是终末期肾脏疾病(ESRD)的主要原因之一,其病理生理过程复杂。及时预防和治疗对延缓DKD的发展具有重要意义。本研究旨在利用生物信息学分析找到可能成为DKD治疗靶点的关键诊断标志物。


1. 数据处理

 作者从GEO数据库下载了七个数据集,共计214个样本,并使用“sva” R软件包的“ComBat”函数去除来自不同来源的数据的批次效应。PCA图表显示了在去除批次效应之前和之后的数据分布(分别为图1A、B),结果表明批次效应已经得到有效纠正。在合并数据后,可以准确区分DKD和正常样本(图1C)。使用“limma” R软件包进行差异分析, 作者鉴定出共计772个差异表达基因(其中381个上调,391个下调),如火山图所示(图1D)。接下来, 作者对差异基因进行ORA富集分析。从圆形网络图中可以看出,这些基因富集在“炎症反应”、“上皮间质转化”、“凋亡”和“TNFA信号通路通过NFKB”等途径中(图1E)。TreeMap显示,上调基因主要参与免疫激活、T细胞激活和细胞黏附等生物过程,而下调基因主要富集在与代谢调节相关的生物功能中(图1F)。这些发现通过Kyoto Encyclopedia of Genes and Genomes (KEGG)通路富集分析得到了相应的验证(图1G)。

41cff33674ce645f86c086f280c25934.jpeg

图1 糖尿病肾病(DKD)的差异表达基因(DEG)鉴定和富集分析


2. DKD的不同亚组的鉴定

首先, 作者将氧化应激和炎症反应相关基因(OS Infla)与先前获得的差异表达基因(DEGs)进行交叉,并获得了84个差异表达的氧化应激和炎症反应相关基因(DEOIGs)(图2A)。接下来, 作者使用R软件包“ConsensusClusterPlus”根据这84个DEOIGs将DKD患者分为不同的亚组。当一致性矩阵k值为2时,DKD样本之间的交叉最小,符合选择标准(图2B-E)。因此,113个DKD样本被分为两个明显的聚类,即DKD亚型1和2(分别为C1和C2)。热图显示大多数DEOIGs在C1亚型中上调,在C2亚型和正常样本中下调(图2F)。GSEA富集分析表明,C1亚型富集了细胞外基质受体相互作用,而C2亚型富集了代谢途径(图2G)。 作者量化了不同免疫细胞亚群的ssGSEA富集分数,以用于研究DKD亚型与免疫细胞之间的关系。结果表明,C1亚型在更多与免疫相关的细胞中富集,如调节性T细胞、巨噬细胞、活化的B细胞和浆细胞样树突状细胞。然后, 作者通过查阅文献并使用ssGSEA分析量化结果,找到了近年来与DKD密切相关的通路。山地图显示了两个亚型和正常样本的通路ssGSEA得分,揭示了Wnt、Notch和凋亡通路在C1亚型中较高,而过氧化物酶活化受体(PPAR)、过氧化物酶体、哺乳动物雷帕霉素靶蛋白(mTOR)、自噬、AMPK和其他通路在C1亚型中较低(图2H)。

a8cefb49cd382eca543ad6246bbc252b.jpeg

图2 DKD亚型的鉴定


3. 构建WGCNA并识别关键模块

 作者使用了来自七个不同数据集的113个DKD样本,使用中位数绝对偏差对前5000个基因进行了WGCNA分析的筛选。随后, 作者根据尺度自由拟合指数和不同软阈值幂的平均连接度,基于尺度自由R2进行了评估。 作者的研究选择了软阈值幂β = 6和尺度自由R2 = 0.8744133来构建一个标准的尺度自由网络,使用Pick Soft Threshold函数(图3A)。最终, 作者确定了六个模块(图3B)。 作者使用相关热图来探索每个模块与糖尿病肾病的相关性,发现MEblue模块与C1和C2亚型的相关性最高(图3C)。基因重要性评分被用来分析基因与DKD亚型之间的关联,结果显示MEblue模块具有最高的基因重要性评分(图3D)。相关散点图进一步证明了MEblue模块中的基因不仅与MEblue模块强相关,而且与糖尿病肾病亚型显著相关(图3E)。因此, 作者提取了MEblue模块中的基因进行后续分析。

38a4199ccfbe271366761be4a3f6ee32.jpeg

图3 加权基因共表达网络分析(WGCNA)


4. 糖尿病肾病的诊断标志物鉴定

&nbsp;作者通过对糖尿病肾病的两个亚型进行差异分析,获得了473个差异基因(|log2FC| > 1,padj < 0.05)。Venn图显示,在与MEblue模块中的1458个基因相交后,发现了347个相交基因。使用STRING在线网络工具构建了上述347个基因的PPI网络图,并在Cytoscape软件中进行了分析。使用Upset图选择满足CytoHubba插件的12种算法的相交基因,最终获得了279个基因(附图4)。基于这279个基因,&nbsp;作者进一步使用不同的生物信息学方法筛选出诊断标志物。使用LASSO回归算法,挑选出了12个潜在生物标志物(图4A、B)。随机森林(RF)算法确定了15个候选基因(图4C、D)。SVM-RFE算法显示,当特征基因数为64时,准确率最高达到0.956(图4E)。最终,&nbsp;作者获得了四个基因作为DKD的诊断标志物(图4F)。

e22e4e44dbea78ef1e128e64a6f9024d.jpeg

图4 诊断标记物的鉴定


5.&nbsp;四个诊断标志物的诊断价值和验证

箱线图显示了在七个合并的GEO数据集中四个标志基因的表达情况(图5A)。可以看出,DKD样本中四个基因的表达高于正常样本。Nephroseq v5在线数据库中的样本也验证了它们的高表达(图5B),表明它们在DKD的发生和发展过程中可能起到重要作用。在合并的GEO数据集中,当将所有四个基因作为一个变量进行拟合时,ROC曲线下面积(AUC)为0.808,比单独使用它们作为诊断变量时获得了更好的结果(图5C)。&nbsp;作者还评估了这四个基因在来自GSE142025数据集的独立患者队列中的诊断效能。每个基因的ROC曲线下面积(AUC)值都大于0.8,表明这四个基因可以诊断DKD(图5D)。相关分析显示,四个基因的表达与肌酐呈正相关(图5E),与肾小球滤过率呈负相关(图5F)。

300d4626a0490fe565b2cfd784af0544.jpeg

图5 诊断效能和诊断标志物的外部验证


6.&nbsp;基于特征基因的DKD诊断模型的Nomogram构建

基于四个诊断标志物的表达,&nbsp;作者基于逻辑回归构建了一个诊断模型,并绘制了一个图表(图6A)。在这个图表中,参与构建诊断模型的每个基因对应一个分数,它们的分数相加得到一个总分,该总分对应不同的DKD诊断效果。校准曲线显示该图表能可靠地诊断DKD(图6B)。ROC曲线表明该模型的AUC值为0.801(图6C)。DCA结果通过四个单独的基因或它们的组合来评估DKD患者的结果,显示了净效益(NB)。结果表明,组合的图表模型能显著增加净效益(图6D)。

242fbe51baca3379b89a91b00629c41e.jpeg

图6 DKD诊断模型的构建


7.&nbsp;诊断标志物的功能富集分析

为了探索与诊断标志物相关的生物过程,&nbsp;作者分析了这四个诊断标志物与免疫细胞的相关性。结果表明,它们与大多数免疫细胞浸润呈正相关(图7A),如活化的CD4 T细胞、活化的树突状细胞、调节性T细胞、巨噬细胞等。接下来,&nbsp;作者根据基因表达将DKD样本分为高表达组和低表达组。对高表达组和低表达组中的差异表达基因进行GSEA分析,以探索可能涉及的信号通路,结果发现这四个基因的通路富集是一致的。因此,它们在TNFA SIGNALING VIA NFKB、KRAS SIGNALING UP、INTERFERON GAMMA RESPONSE、INFLAMMATORY RESPONSE、EPITHELIAL MESENCHYMAL TRANSITION等方面均显著富集(图7B)。功能富集分析显示,这四个基因的高表达组均富集在ADAPTIVE IMMUNE RESPONSE、T CELL ACTIVATION、IMMUNE RESPONSE REGULATING CELL SURFACE RECEPTOR SIGNALING PATHWAY等方面。低表达组在生物过程中富集了一些如SMALL MOLECULE CATABOLIC PROCESS、FATTY ACID CATABOLIC PROCESS、INNER MITOCHONDRIAL MEMBRANE PROTEIN COMPLEX等的过程(图7C)。

22cb5a92c8056daaae4ebc6905e4bdd3.jpeg

图7 诊断标志物的生物学功能富集


8.&nbsp;动物模型中的验证

为了进一步验证这四个标志物在早期DKD诊断中的诊断价值,&nbsp;作者利用12周龄的db/db小鼠作为自发性DKD模型。&nbsp;作者发现,与正常对照组小鼠相比,DKD组小鼠的体重、血糖、HbA1c、血清肌酐、血尿素氮和尿白蛋白/肌酐水平显著增加(图8A)。病理染色还显示DKD组小鼠的肾组织中有系膜细胞增生、系膜基质扩张以及肾小球和肾小管基底膜不规则增厚(图8B),表明自发性DKD模型已成功建立。接下来,&nbsp;作者检测了四个生物标志物(包括TNC、PXDN、TIMP1和TPM1)的mRNA表达水平。结果显示,TNC、TPM1和PXDN在小鼠模型中显著升高。不幸的是,TIMP1呈上升趋势,两组之间没有差异(图8C)。&nbsp;作者还检测了小鼠血液和尿液中的四个生物标志物中的三种分泌蛋白。结果显示,TNC和PXDN在血液和尿液中持续升高,而TIMP1在尿液中显著升高,但在血液中没有显著差异(图8D)。相关分析显示,无论是血液样本还是尿液样本,这些标志物与尿白蛋白/肌酐比值明显呈正相关。至于血糖和HbAc1,这些标志物与它们之间没有显著相关性。免疫组化结果显示,TNC、TPM1、TIMP1和PXDN的表达水平在DKD小鼠模型中升高(图8E)。为了进一步验证上述变化与DKD而不是糖尿病有关,&nbsp;作者的研究还添加了两组6周龄的db/db小鼠和正常小鼠。&nbsp;作者发现,与正常对照小鼠相比,DM小鼠的体重、血糖和HbA1c显著增加,但两组小鼠的血清肌酐、血尿素氮和尿白蛋白/肌酐水平之间没有差异。同时,在肾脏病理染色中没有发现显著差异。qRT-PCR的结果显示,TPM1和TIMP1的mRNA表达水平在两组之间没有统计学差异。TNC和PXDN的表达在DM组中增加。此外,检测了DM组小鼠的血液和尿液样本中三种分泌蛋白的表达水平,并发现只有血液样本中的TNC在DM小鼠中显著增加。对于尿液样本,DM小鼠中的TNC和TIMP1的升高存在显著差异。

bee9a632782d6b438298fe01402d208e.jpeg

图8 动物实验中诊断标志物的验证


总结

总之,&nbsp;作者通过全面系统的生物信息学分析和实验验证,确定了TNC、PXDN、TIMP1和TPM1作为DKD的潜在诊断标志物,并建立了一个包含这四个诊断标志物的图表,并初步探讨了它们在DKD的发生和发展中可能的生物学功能。这些发现将为DKD的早期诊断和治疗提供新的思路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/159925.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows下Redis3.0主从模式架构搭建

redis版本&#xff1a;Redis-x64-3.0.504 复制相同文件 修改文件夹下redis.windows.conf 文件配置(注意&#xff1a;主有密码&#xff0c;从必须有密码且跟主相同) 修改端口&#xff1a; 主库&#xff1a;端口号6379 从库1&#xff1a;修改端口号为6380 从库2&#xff1a;修…

win11下的VS2022+QT6+VTK9.2+PCL1.13.1联合开发环境配置及踩坑记录

准备工作&#xff1a; 安装VS2022&#xff1a;这个比较简单&#xff0c;网上随便找个教程就行 安装QT并为VS2022添加QT Creater插件&#xff1a;VS2022配置Qt6_vs2022 qt6-CSDN博客 安装PCL&#xff1a;vs2022配置pcl1.13.1_pcl配置-CSDN博客 安装PCL过程中本身也会安装VTK&…

iOS代码混淆-从入门到放弃

​ iOS代码混淆-从入门到放弃 目录 1. 什么是iOS代码混淆&#xff1f; 2. iOS自动代码混淆的方法是什么&#xff1f; 3. iOS代码混淆的作用是什么&#xff1f; 4. 怎么样才能做到更好的iOS代码混淆&#xff1f; 总结 参考资料 1. 什么是iOS代码混淆&#xff1f; 代码混…

数据挖掘之贝叶斯优化——前反馈特征的参数,估计特征的最佳数值

贝叶斯优化是一个全局优化方法&#xff0c;用于优化具有噪声的黑盒函数。这一方法在许多现实世界的问题中都有应用&#xff0c;特别是在那些评估目标函数的代价很高的场合&#xff0c;例如超参数调优。 背景&#xff1a; 为什么需要贝叶斯优化&#xff1f; 在数据挖掘、机器…

你知道跨境商城源码如何为商家节省成本和时间吗

跨境电商行业迅速发展&#xff0c;商家如何利用跨境商城源码实现成本和时间节省 在全球经济一体化的背景下&#xff0c;跨境电商行业蓬勃发展&#xff0c;为商家提供了全球范围的市场机会。然而&#xff0c;面临的挑战也日益增多&#xff0c;比如高昂的运营成本和繁琐的流程&am…

Ruby语言基础知识

Ruby是一种简单快捷的面向对象脚本语言&#xff0c;由日本人松本行弘&#xff08;Yukihiro Matsumoto&#xff09;在20世纪90年代开发&#xff0c;遵守GPL协议和Ruby License。它的灵感和特性来自于Perl、Smalltalk、Eiffel、Ada以及Lisp语言。 以下是Ruby语言的一些特点&#…

rust: function

///file: nestd.rs ///ide: RustRover 233.8264.22 /// /// /// /***自定义函数*/ pub fn function() {println!("called my::nested::function()"); }#[allow(dead_code)] fn private_function() {println!("called my::nested::private_function()"); }/…

Linux服务器快速搭建pytorch

Linux服务器搭建pytorch 文章目录 Linux服务器搭建pytorch一、使用FileZilla传输Anaconda二、激活Anaconda环境1.创建一个虚拟环境2.使用已有项目生成requirements.txt3.在虚拟环境中使用requirements.txt安装其他项目相关库 总结 一、使用FileZilla传输Anaconda 提示&#xf…

Bitquiz重塑Learn to Earn热潮,用户零投入让学习创造价值

Axie 带来的暴富效应、StepN 带来的出圈效应&#xff0c;近期Bigtime 在熊市中的大火&#xff0c;为加密参与者带来的赚取效应&#xff0c;X to Earn 重新成为整个市场关注的重点&#xff0c;GameFi 再次站在了风口浪尖。 大家开始寻找下一个Bigtime&#xff0c;希望能够抓住一…

5.Python-使用XMLHttpRequest对象来发送Ajax请求

题记 使用XMLHttpRequest对象来发送Ajax请求&#xff0c;以下是一个简单的实例和操作过程。 安装flask模块 pip install flask 安装mysql.connector模块 pip install mysql-connector-python 编写app.py文件 app.py文件如下&#xff1a; from flask import Flask, reque…

framework通信机制—LiveData使用方法及原理

LiveData是一种可观察的数据存储器类。与常规的可观察类不同&#xff0c;LiveData 具有生命周期感知能力&#xff0c;意指它遵循其他应用组件&#xff08;如 activity、fragment 或 service&#xff09;的生命周期。这种感知能力可确保 LiveData 仅更新处于活跃生命周期状态的应…

树模型(三)决策树

决策树是什么&#xff1f;决策树(decision tree)是一种基本的分类与回归方法。 长方形代表判断模块 (decision block)&#xff0c;椭圆形成代表终止模块(terminating block)&#xff0c;表示已经得出结论&#xff0c;可以终止运行。从判断模块引出的左右箭头称作为分支(branch)…

PyTorch 深度学习之加载数据集Dataset and DataLoader(七)

1. Revision: Manual data feed 全部Batch&#xff1a;计算速度&#xff0c;性能有问题 1 个 &#xff1a;跨越鞍点 mini-Batch:均衡速度与性能 2. Terminology: Epoch, Batch-Size, Iteration DataLoader: batch_size2, sheffleTrue 3. How to define your Dataset 两种处…

Java-使用sqlSessionTemplate实现批量更新-模拟mybatis 动态sql

环境准备&#xff08;非核心方法&#xff09; 创建表 创建表的sql(下表是基于Oracle创建的) CREATE TABLE "SYSTEM"."STUDENT" ("ID" NUMBER(10, 0),"NAME" VARCHAR2(20 BYTE),"ADDRES" CLOB,PRIMARY KEY ( …

Element UI库 之 el-input 赋值后不能删除,修改,输入

最近做了一个需求就是导入数据的&#xff0c; 导入了之后发现打折跟促销价都发不能修改了&#xff0c; 甚至删除都不行。后面去查了下发现大概是数据响应的问题。大概的解决办法有下面几个&#xff0c;我是用最后一个解决的 方法一&#xff1a;强制更新 在绑定input里面的调用…

micropython ESP32-S3点亮板载RGB灯珠

micropython ESP32-S3点亮板载RGB灯珠 1、vscode中安装 RT-Thread插件 2、新建个文件夹 3、在这个文件夹下面创建一个文件&#xff0c;命名为neopixel.py。在该文件中粘贴下面代码。 # NeoPixel driver for MicroPython on ESP32 # MIT license; Copyright (c) 2016 Damie…

windows应用程序告警:帐户名与安全标识间无任何映射完成

目录 一、问题现象 二、问题解决 &#xff08;一&#xff09;官方方法 &#xff08;二&#xff09;问题定位 &#xff08;三&#xff09;问题处理 一、问题现象 今天巡检域控服务器时&#xff0c;发现告警如下&#xff1a; 安全策略已传播&#xff0c;但有警告信息。 0x534…

苹果 Vision Pro 头显新专利:增加重量减轻颈部压力

上周&#xff0c;彭博社的古尔曼表示 Vision Pro 头显过重&#xff0c;导致开发者佩戴后出现明显的颈部疲劳。随后&#xff0c;便有人发现在美国商标和专利局&#xff08;USPTO&#xff09;公示的清单中&#xff0c;苹果公司又获得了一项Vision Pro的专利&#xff0c;该专利提…

【深度学习 | Transformer】释放注意力的力量:探索深度学习中的 变形金刚,一文带你读通各个模块 —— Positional Encoding(一)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

SpringBoot面试题4:Spring Boot 支持哪些日志框架?推荐和默认的日志框架是哪个?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:Spring Boot 支持哪些日志框架?推荐和默认的日志框架是哪个? Spring Boot支持多种日志框架,包括以下几种: Logback:Logback 是一个快速、灵活…