正点原子嵌入式linux驱动开发——Linux并发与竞争

Linux是一个多任务操作系统,肯定会存在多个任务共同操作同一段内存或者设备的情况,多个任务甚至中断都能访问的资源叫做共享资源。在驱动开发中要注意对共享资源的保护,也就是要处理对共享资源的并发访问。在Linux驱动编写过程中对于并发控制的管理非常重要,本章就来学习一下如何在Linux驱动中处理并发

并发与竞争

并发与竞争简介

并发就是多个“用户”同时访问同一个共享资源。Linux系统是个多任务操作系统,会存在多个任务同时访问同一片内存区域,这些任务可能会相互覆盖这段内存中的数据,造成内存数据混乱。针对这个问题必须要做处理,严重的话可能会导致系统崩溃。现在的Linux系统并发产生的原因很复杂,总结一下有下面几个主要原因:

  1. 多线程并发访问:Linux是多任务(线程)的系统,所以多线程访问是最基本的原因。
  2. 抢占式并发访问,从2.6版本内核开始,Linux内核支持抢占,也就是说调度程序可以在任意时刻抢占正在运行的线程,从而运行其他的线程。
  3. 中断程序并发访问。
  4. SMP(多核)核间并发访问,现在ARM架构的多核SOC很常见,多核CPU存在核间并发访问。

并发访问带来的问题就是竞争,临界区就是共享数据段,对于临界区必须保证一次只有一个线程访问,也就是要保证临界区是原子访问的,原子访问就表示这一个访问是一个步骤,不能再进行拆分。如果多个线程同时操作临界区就表示存在竞争,在编写驱动的时候一定要注意避免并发和防止竞争访问。一般在编写驱动的时候就要考虑到并发与竞争,而不是驱动都编写完了然后再处理并发与竞争。

保护内容

前面一直说要防止并发访问共享资源,换句话说就是要保护共享资源,防止进行并发访问。那么问题来了,什么是共享资源?也就是保护的内容是什么?保护的不是代码,而是数据!某个线程的局部变量不需要保护,要保护的是多个线程都会访问的共享数据。找到要保护的数据才是重点,而这个也是难点,因为驱动程序各不相同,那么数据也千变万化,一般像全局变量,设备结构体这些肯定是要保护的,至于其他的数据就要根据实际的驱动程序而定了

当发现驱动程序中存在并发和竞争的时候一定要处理掉,接下来依次来学习一下Linux内核提供的几种并发和竞争的处理方法。

原子操作

原子操作就是指不能再进一步分割的操作,一般原子操作用于变量或者位操作。假如现在要对无符号整形变量a赋值,值为3,用C语言实现很简单,但是C语言要先编译为成汇编指令,ARM架构不支持直接对寄存器(内存)进行读写操作,要借助寄存器R0、R1等来完成赋值操作。假设变量a的地址为0X3000000,“a=3”这一行C语言可能会被编译为如下所示的汇编代码:

示例代码27.2.1.1 汇编示例代码 
1 ldr r0, =0X30000000 /* 变量a地址 */ 
2 ldr r1, = 3 /* 要写入的值 */ 
3 str r1, [r0] /* 将3写入到a变量中 */

示例代码27.2.1.1只是一个简单的举例说明,实际的结果要比示例代码复杂的多。从上述代码可以看出, C语言里面简简单单的一句“a=3”,编译成汇编文件以后变成了3句,那么程序在执行的时候肯定是按照示例代码27.2.1.1中的汇编语句一条一条的执行。假设现在线程A要向a变量写入10这个值,而线程 B也要向a变量写入20这个值,理想中的执行顺序如下图所示:
理想执行情况
按照上图流程,确实可以实现线程A将a变量设置为10,线程B将a变量设置为20。但是实际上的执行流程可能如下图所示:
可能的执行流程
按照上图所示的流程,线程A最终将变量a设置为了20,而并不是要求的10!线程B没有问题。这就是一个最简单的设置变量值的并发与竞争的例子,要解决这个问题就要保证示例代码27.2.1.1中的三行汇编指令作为一个整体运行,也就是作为一个原子存在。Linux内核提供了一组原子操作API函数来完成此功能,Linux内核提供了两组原子操作API函数,一组是对整形变量进行操作的,一组是对位进行操作的

原子整形操作API函数

Linux内核定义了叫做atomic_t的结构体来完成整形数据的原子操作,在使用中用原子变量来代替整形变量,此结构体定义在include/linux/types.h文件中,定义如下:

示例代码27.2.2.1 atomic_t 结构体
171 typedef struct {
172     int counter;
173 } atomic_t;

如果要使用原子操作API函数,首先要先定义一个atomic_t的变量,如下所示:

atomic_t a; //定义a

也可以在定义原子变量的时候给原子变量赋初值,如下所示:

atomic_t b = ATOMIC_INIT(0); //定义原子变量b并赋初值为0

可以通过宏ATOMIC_INIT向原子变量赋初值。

原子变量有了,接下来就是对原子变量进行操作,比如读、写、增加、减少等等,Linux内核提供了大量的原子操作API函数,如下图所示:
原子整形操作API函数表
Cortex-A7是32位的架构,所以就只需要用上图所示的32位原子操作函数即可。原子变量和相应API的使用可以参考下例:

示例代码27.2.2.2 原子变量和API函数使用 
atomic_t v = ATOMIC_INIT(0); /* 定义并初始化原子变零v=0 */ 
atomic_set(&v, 10); /* 设置v=10 */ 
atomic_read(&v); /* 读取v的值,肯定是10 */ 
atomic_inc(&v); /* v的值加1,v=11 */

原子位操作API函数

位操作也是很常用的操作,Linux内核也提供了一系列的原子位操作API函数,只不过原子位操作不像原子整形变量那样有个atomic_t的数据结构,原子位操作是直接对内存进行操作,API函数如下图所示:
原子位操作函数表

自旋锁

自旋锁简介

原子操作只能对整形变量或者位进行保护,但是,在实际的使用环境中不可能只有整形变量或位这么简单的临界区。举个最简单的例子,设备结构体变量就不是整型变量,对于结构体中成员变量的操作也要保证原子性,在线程A对结构体变量使用期间,应该禁止其他的线程来访问此结构体变量,这些工作原子操作都不能胜任,需要本节要讲的锁机制,在Linux内核中就是自旋锁

当一个线程要访问某个共享资源的时候首先要先获取相应的锁,锁只能被一个线程持有,只要此线程不释放持有的锁,那么其他的线程就不能获取此锁。对于自旋锁而言,如果自旋锁正在被线程A持有,线程B想要获取自旋锁,那么线程B就会处于忙循环-旋转-等待状态,线程B不会进入休眠状态或者说去做其他的处理,而是会一直等待锁可用

自旋锁的“自旋”也就是“原地打转”的意思,“原地打转”的目的是为了等待自旋锁可以用,可以访问共享资源。把自旋锁比作一个变量a,变量a=1的时候表示共享资源可用,当a=0的时候表示共享资源不可用。现在线程A要访问共享资源,发现a=0(自旋锁被其他线程持有)那么线程A就会不断的查询a的值,直到a=1。从这里可以看到自旋锁的一个缺点:等待自旋锁的线程会一直处于自旋状态,这样会浪费处理器时间,降低系统性能,所以自旋锁的持有时间不能太长。自旋锁适用于短时期的轻量级加锁,如果遇到需要长时间持有锁的场景那就需要换其他的方法了。

Linux内核使用了结构体spinlock_t表示自旋锁,结构体定义如下;

示例代码27.3.1.1 spinlock_t结构体 
61 typedef struct spinlock { 
62     union { 
63         struct raw_spinlock rlock; 
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC 
66 # define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map)) 
67         struct { 
68             u8 __padding[LOCK_PADSIZE];
69             struct lockdep_map dep_map; 
70         }; 
71 #endif 
72     }; 
73 } spinlock_t;

在使用自旋锁之前,肯定要先定义一个自旋锁变量,定义方法如下所示:

spinlock_t lock; //定义自旋锁

定义好自旋锁变量以后就可以使用相应的API函数来操作自旋锁。

自旋锁API函数

最基本的自旋锁API函数如下图所示:
自旋锁基本API函数表
上图中的自旋锁API函数适用于SMP或支持抢占的单CPU下线程之间的并发访问,也就是用于线程与线程之间,被自旋锁保护的临界区一定不能调用任何能够引起睡眠和阻塞的API函数,否则的话会可能会导致死锁现象的发生。自旋锁会自动禁止抢占,也就说当线程A得到锁以后会暂时禁止内核抢占。如果线程A在持有锁期间进入了休眠状态,那么线程A会自动放弃CPU使用权。线程B开始运行,线程B也想要获取锁,但是此时锁被A线程持有,而且内核抢占还被禁止了!线程B无法被调度出去,那么线程A就无法运行,锁也就无法释放,死锁发生了!

上图中的API函数用于线程之间的并发访问,如果此时中断也要插一脚,中断也想访问共享资源,那该怎么办呢?首先可以肯定的是,中断里面可以使用自旋锁,但是在中断里面使用自旋锁的时候,在获取锁之前一定要先禁止本地中断(也就是本CPU中断,对于多核SOC来说会有多个CPU核),否则可能导致锁死现象的发生,下图所示:
中断打断线程
上图中,线程A先运行,并且获取到了lock这个锁,当线程A运行functionA函数的时候中断发生了,中断抢走了CPU使用权。右边的中断服务函数也要获取lock这个锁,但是这个锁被线程A占有着,中断就会一直自旋,等待锁有效。但是在中断服务函数执行完之前,线程A是不可能执行的,死锁发生!

最好的解决方法就是获取锁之前关闭本地中断,Linux内核提供了相应的API函数,如下图所示:
线程与中断并发访问处理API函数
使用spin_lock_irq/spin_unlock_irq的时候需要用户能够确定加锁之前的中断状态,但实际上内核很庞大,运行也是“千变万化”,很难确定某个时刻的中断状态,因此不推荐使用spin_lock_irq/spin_unlock_irq。建议使用spin_lock_irqsave/ spin_unlock_irqrestore,因为这一组函数会保存中断状态,在释放锁的时候会恢复中断状态。一般在线程中使用spin_lock_irqsave/ spin_unlock_irqrestore,在中断中使用spin_lock/spin_unlock,示例代码如下所示:

示例代码27.3.2.1 自旋锁使用示例 
1 DEFINE_SPINLOCK(lock) /* 定义并初始化一个锁 */ 
2 
3 /* 线程A */ 
4 void functionA (){ 
5 	  unsigned long flags; /* 中断状态 */ 
6 	  spin_lock_irqsave(&lock, flags) /* 获取锁 */ 
7	   /* 临界区 */ 
8 	  spin_unlock_irqrestore(&lock, flags) /* 释放锁 */ 
9 } 
10 
11 /* 中断服务函数 */ 
12 void irq() { 
13 	  spin_lock(&lock) /* 获取锁 */ 
14 	  /* 临界区 */ 
15 	  spin_unlock(&lock) /* 释放锁 */ 
16 }

下半部(BH)也会竞争共享资源,有些资料也会将下半部叫做底半部。关于下半部后面会讲解,如果要在下半部里面使用自旋锁,可以使用下图中的API函数:
下半部竞争处理函数

其他类型的锁

在自旋锁的基础上还衍生出了其他特定场合使用的锁,这些锁在驱动中其实用的不多,更多的是在Linux内核中使用,本节简单来了解一下这些衍生出来的锁。

读写自旋锁

某个数据结构,读和写不能同时进行,但是可以多人并发的读取。当某个数据结构符合读/写或生产者/消费者模型的时候就可以使用读写自旋锁。

读写自旋锁为读和写操作提供了不同的锁,一次只能允许一个写操作,也就是只能一个线程持有写锁,而且不能进行读操作。但是当没有写操作的时候允许一个或多个线程持有读锁,可以进行并发的读操作。Linux内核使用rwlock_t结构体表示读写锁,结构体定义如下(删除了条件编译):

示例代码27.3.3.1 rwlock_t结构体 
typedef struct { arch_rwlock_t raw_lock; 
} rwlock_t;

读写锁操作API函数分为两部分,一个是给读使用的,一个是给写使用的,这些API函数如下图所示:
读写锁API函数

顺序锁

顺序锁在读写锁的基础上衍生而来的,使用读写锁的时候读操作和写操作不能同时进行。使用顺序锁的话可以允许在写的时候进行读操作,也就是实现同时读写,但是不允许同时进行并发的写操作。虽然顺序锁的读和写操作可以同时进行,但是如果在读的过程中发生了写操作,最好重新进行读取,保证数据完整性顺序锁保护的资源不能是指针,因为如果在写操作的时候可能会导致指针无效,而这个时候恰巧有读操作访问指针的话就可能导致意外发生,比如读取野指针导致系统崩溃。Linux内核使用seqlock_t结构体表示顺序锁,结构体定义如下:

示例代码27.3.3.2 seqlock_t结构体 
404 typedef struct { 
405     struct seqcount seqcount; 
406     spinlock_t lock; 
407 } seqlock_t;

关于顺序锁的API函数如下图所示;
顺序锁API函数表

自旋锁使用注意事项

综合前面关于自旋锁的信息,我们需要在使用自旋锁的时候要注意一下几点:

  1. 因为在等待自旋锁的时候处于“自旋”状态,因此锁的持有时间不能太长,一定要短,否则的话会降低系统性能。如果临界区比较大,运行时间比较长的话要选择其他的并发处理方式,比如稍后要讲的信号量和互斥体。
  2. 自旋锁保护的临界区内不能调用任何可能导致线程休眠的API函数,否则的话可能导致死锁。
  3. 不能递归申请自旋锁,因为一旦通过递归的方式申请一个正在持有的锁,那么就必须“自旋”,等待锁被释放,然而此时正处于“自旋”状态,根本没法释放锁。结果就是自己把自己锁死了!
  4. 在编写驱动程序的时候必须考虑到驱动的可移植性,因此不管用的是单核的还是多核的SOC,都将其当做多核SOC来编写驱动程序

信号量

信号量简介

Linux内核也提供了信号量机制,信号量常常用于控制对共享资源的访问

相比于自旋锁,信号量可以使线程进入休眠状态,可以看出,使用信号量会提高处理器的使用效率,毕竟不用一直在那里“自旋”等待。但是,信号量的开销要比自旋锁大,因为信号量使线程进入休眠状态以后会切换线程,切换线程就会有开销。总结一下信号量的特点:

  1. 因为信号量可以使等待资源线程进入休眠状态,因此适用于那些占用资源比较久的场合
  2. 因此信号量不能用于中断中,因为信号量会引起休眠,中断不能休眠。
  3. 如果共享资源的持有时间比较短,那就不适合使用信号量了,因为频繁的休眠、切换线程引起的开销要远大于信号量带来的那点优势。

信号量有一个信号量值,可以通过信号量来控制访问共享资源的访问数量,信号量控制访问资源的线程数,在初始化的时候将信号量值设置的大于1,那么这个信号量就是计数型信号量,计数型信号量不能用于互斥访问,因为它允许多个线程同时访问共享资源。如果要互斥的访问共享资源那么信号量的值就不能大于1,此时的信号量就是一个二值信号量。

信号量API函数

Linux内核使用semaphore结构体表示信号量,结构体内容如下所示:

示例代码27.4.2.1 semaphore结构体 
15 struct semaphore { 
16     raw_spinlock_t     lock; 
17     unsigned int       count; 
18     struct list_head   wait_list; 
19 };

要想使用信号量就得先定义,然后初始化信号量。有关信号量的API函数如下图所示:
信号量API函数
信号量的使用如下所示:

示例代码27.4.2.2 信号量使用示例 
struct semaphore sem; /* 定义信号量 */ sema_init(&sem, 1)/* 初始化信号量 */ down(&sem); /* 申请信号量 */ 
/* 临界区 */ 
up(&sem); /* 释放信号量 */

互斥体

互斥体简介

在FreeRTOS中也有互斥体,将信号量的值设置为1就可以使用信号量进行互斥访问了,虽然可以通过信号量实现互斥,但是Linux提供了一个比信号量更专业的机制来进行互斥,它就是互斥体mutex。互斥访问表示一次只有一个线程可以访问共享资源,不能递归申请互斥体。在编写Linux驱动的时候遇到需要互斥访问的地方建议使用mutex。Linux内核使用mutex结构体表示互斥体,定义如下(省略条件编译部分):

示例代码27.5.1.1 mutex结构体 
struct mutex { atomic_long_t owner; spinlock_t wait_lock; 
};

在使用mutex之前要先定义一个mutex变量。在使用mutex的时候要注意如下几点:

  1. mutex可以导致休眠,因此不能在中断中使用mutex,中断中只能使用自旋锁。
  2. 和信号量一样,mutex保护的临界区可以调用引起阻塞的API函数
  3. 因为一次只有一个线程可以持有mutex,因此,必须由mutex的持有者释放mutex。并且mutex不能递归上锁和解锁

互斥体API函数

有关互斥体的API函数如下图所示:
互斥体API函数
互斥体的使用如下所示:

示例代码27.5.2.1 互斥体使用示例 
1 struct mutex lock; /* 定义一个互斥体 */ 
2 mutex_init(&lock); /* 初始化互斥体 */ 
3 
4 mutex_lock(&lock); /* 上锁 */ 
5 /* 临界区 */ 
6 mutex_unlock(&lock); /* 解锁 */

Linux内核还有很多其他的处理并发和竞争的机制,主要讲解了常用的原子操作、自旋锁、信号量和互斥体。以后在编写Linux驱动的时候就会频繁的使用到这几种机制。

原子操作实验

这里就是在之前的gpioled.c的基础上进行修改,使用原子操作来实现对LED的互斥访问,即一次只能允许一个应用程序使用LED

实验程序编写

修改设备树文件

这里就是用的LED,之前已经添加过了,所以不需要修改。

LED驱动修改

在gpioled的设备结构体gpioled_dev中,添加了atomic_t结构体变量lock,用来表示原子变量,之后使用static定义一个具象化的gpioled_dev的gpioled,表征led设备。

之后再led_open中,通过atomic_dec_and_test(&gpioled.lock)来判断原子变量的值,进而判断LED是否被别的应用使用,如果返回值<0,证明设备被占用,那就通过atomic_inc(&gpioled.lock)来使得原子变量=0;如果返回值=0为真,说明设备未被占用,设置私有数据private_data。

之后的led_release中,关闭驱动文件的时候通过atomic_inc(&dev->lock)释放原子变量,即将lock+1。

在led_init的初始化中,gpioled.lock通过(atomic_t)ATOMIC_INIT(0)来初始化原子变量,并通过atomic_set设置原子变量初始值为1,这样每次只允许用1个应用使用LED。

编写测试代码

这里与之前的区别,就是在写入数据write之后,会通过while循环模拟占用LED灯25s,这其中每间隔5s会print一次循环次数。

运行测试

编译驱动程序

就是把Makefile的obj-m的值变为atomic.o,然后“make -j8”就可以了。

编译测试APP

可以通过如下命令编译atomicApp.c:

arm-none-linux-gnueabihf-gcc atomicApp.c -o atomicApp

运行测试

将编译得到的atomic.ko和atomicApp这两个文件拷贝到rootfs/lib/modules/5.4.31目录中,重启开发板,进入到目录lib/modules/5.4.31中,输入如下命令加载atomic.ko驱动模块:

depmod //第一次加载驱动的时候需要运行此命令
modprobe atomic.ko //加载驱动

加载成功后,可以通过如下命令来运行atomicApp软件,来控制LED:

./atomicApp /dev/gpioled 1 & //打开LED灯

完成后,红色LED会被点亮,通过会输出如下图所示信息:
打开LED灯
此时,可以输入如下命令关闭LED:

./atomicApp /dev/gpioled 0 //关闭LED灯

输入上述命令后,可以看到如下信息:
关闭LED灯
从上图可以看出,打开/dev/gpioled失败!原因是在上图中运行的atomicAPP软件正在占用/dev/gpioled,如果再次运行atomicApp软件去操作/dev/gpioled肯定会失败。必须等待上图中的atomicApp运行结束,也就是25s结束以后其他软件才能去操作/dev/gpioled。这个就是采用原子变量实现一次只能有一个应用程序访问LED灯

如果要卸载驱动的话输入如下命令即可:

rmmod atomic.ko

自旋锁实验

上一节使用原子变量实现了一次只能有一个应用程序访问LED灯,本节使用自旋锁来实现此功能。在使用自旋锁之前,先回顾一下自旋锁的使用注意事项:

  1. 自旋锁保护的临界区要尽可能的短,因此在open函数中申请自旋锁,然后在release函数中释放自旋锁的方法就不可取。可以使用一个变量来表示设备的使用情况,如果设备被使用了那么变量就加1,设备被释放以后变量就减1,只需要使用自旋锁保护这个变量即可
  2. 考虑驱动的兼容性,合理的选择API函数。

综上所述,在本节例程中,通过定义一个变量dev_stats表示设备的使用情况,dev_stats为0的时候表示设备没有被使用,dev_stats大于0的时候表示设备被使用。驱动open函数中先判断dev_stats是否为0也就是判断设备是否可用,如果为0的话就使用设备,并且将dev_stats加 1,表示设备被使用了。使用完以后在release函数中将dev_stats减1,表示设备没有被使用了。因此真正实现设备互斥访问的是变量dev_stats,但是要使用自旋锁对dev_stats来做保护

实验程序编写

修改设备树文件

这里不需要修改。

LED驱动修改

将原来使用atomic的地方换为spinlock即可,其他代码不需要修改。

gpioled_dev中换成spinlock_t lock来表示自旋锁,同时通过int dev_stats表示使用状态。

在led_open中,定义一个unsigned long flags,通过spin_lock_irqsave上锁,然后通过gpioled.dev_stats来判断设备使用情况,如果=1说明被使用了,就通过spin_unlock_irqrestore解锁;否则就直接gpioled.dev_stats++表示被占用,同时使用spin_unlock_irqrestore解锁。

在led_release中,关闭驱动文件的时候调用spin_lock_irqsave上锁,此时如果设备被占用,就直接dev->dev_stats–,之后通过spin_unlock_irqrestore解锁。

之后,在初始化的led_init函数中,调用spin_lock_init初始化自旋锁。

编写测试APP

与上一小节的atomicApp.c一样就可以了。

运行测试

将Makefile的obj-m的值改为spinlock.o,然后“make -j8”编译就可以了。

编译测试APP

通过如下命令编译:

arm-none-linux-gnueabihf-gcc spinlockApp.c -o spinlockApp

运行测试

将上一小节编译出来的spinlock.ko和spinlockApp这两个文件拷贝到rootfs/lib/modules/5.4.31目录中,重启开发板,进入到目录lib/modules/5.4.31中,输入如下命令加载spinlock.ko驱动模块:

depmod //第一次加载驱动的时候需要运行此命令
modprobe spinlock.ko //加载驱动

可以通过如下的命令开关LED,实验现象与上一小节是一样的:

./spinlockApp /dev/gpioled 1 & //打开LED灯
./spinlockApp /dev/gpioled 0 //关闭LED灯

卸载驱动可以通过如下命令:

rmmod spinlock.ko

信号量实验

使用信号量来实现一次只能有一个应用程序访问LED灯,信号量可以导致休眠,因此信号量保护的临界区没有运行时间限制,可以在驱动的open函数申请信号量,然后在release函数中释放信号量。但是信号量不能用在中断中,本节实验不会在中断中使用信号量。

实验程序编写

修改设备树文件

这里不需要修改。

LED驱动修改

将原来使用到自旋锁的地方换为信号量即可,其他的内容基本不变。

在gpioled_dev设备结构体中,最后换成struct semaphore sem添加一个信号量。

在led_open中,先设置私有数据,然后可以通过down_interruptible(&gpioled.sem)获取信号量,这里进入休眠是可以被信号打断的,这里如果>=1就可以使用LED;如果=0就不能使用,应用程序就会进入休眠态,等到信号量值>=1才会被唤醒,申请信号量来获取LED使用权。

在led_release中,通过up(&dev->sem)释放信号量,信号量count+1。

在led_init中,通过sema_init(&gpioled.sem, 1)初始化信号量,表明是一个二值信号量。

编写测试APP

这里直接将之前的拷贝过来就可以了。

运行测试

编译驱动程序

把Makefile的obj-m改成semaphore.o然后“make”就可以了。

编译测试APP

通过下面的命令编译即可:

arm-none-linux-gnueabihf-gcc semaApp.c -o semaApp

运行测试

将上一小节编译出来的semaphore.ko和semaApp这两个文件拷贝到rootfs/lib/modules/5.4.31目录中,重启开发板,进入到目录lib/modules/5.4.31中,输入如下命令加载semaphore.ko驱动模块:

depmod //第一次加载驱动的时候需要运行此命令
modprobe semaphore.ko //加载驱动

测试方法也与之前一样:

./semaApp /dev/gpioled 1 & //打开LED灯
./semaApp /dev/gpioled 0 & //关闭LED灯

这两条命令连续输入,第一条命令先获取到信号量,因此可以操作LED灯,将LED灯打开,并且占有25S。第二条命令因为获取信号量失败而进入休眠状态,等待第一条命令运行完毕并释放信号量以后才拥有LED灯使用权,将LED灯关闭,运行结果如下图所示:
命令运行过程
卸载驱动可使用如下命令:

rmmod semaphore.ko

互斥体实验

这里LED只涉及开关状态,所以最适合的其实是互斥体mutex。

实验程序编写

修改设备树文件

这里不需要修改。

LED驱动修改

将原来使用到信号量的地方换为mutex即可,其他的内容基本不变。

在gpioled_dev设备结构体中,最后换成struct mutex lock来表示互斥体。

led_open中,通过mutex_lock_interruptible(&gpioled.lock)获取互斥体mtex,如果成功那么就可以使用LED灯,摔了就进入休眠。

led_release中,通过mutex_unlock释放互斥锁。

led_init中,通过mutex_init初始化互斥锁。

编写测试APP

这里直接把之前的拷贝过来就可以了。

运行测试

编写驱动程序

将Makefile的obj-m换成mutex.o,然后直接“make”就可以了。

编译测试APP

可以通过如下命令来编译:

arm-none-linux-gnueabihf-gcc mutexApp.c -o mutexApp
### 运行测试 将上一小节编译出来的mutex.ko和mutexApp这两个文件拷贝到rootfs/lib/modules/5.4.31目录中,重启开发板,进入到目录lib/modules/5.4.31中,输入如下命令加载mutex.ko驱动模块:
depmod //第一次加载驱动的时候需要运行此命令
modprobe mutex.ko //加载驱动

测试就跟之前是一样的,这里不赘述了。

如果要卸载驱动,可以通过如下命令:

rmmod mutex.ko

总结

这一篇笔记,内容其实跟之前学FreeRTOS很类似,除了没有自旋锁和原子操作,后面的信号量就是一样的,互斥体就是二值信号量。主要的代码驱动编写,也是掌握住几个API就可以了。

主要关注自旋锁和信号量。

自旋锁的上锁和解锁是在led_open之中就可以完成的,通过spin_lock_irqsave上锁,通过自行设定dev_stats来表示使用状态,=0就可以使用,由spin_unlock_irqrestore解锁;在led_release总,还是由dev_stats判断使用情况,一样要先spin_lock_irqsave上锁之后判断使用情况,有使用就dev_stats–然后spin_unlock_irqrestore解锁;同时在led_init之中要通过spin_lock_init初始化自旋锁。

信号量和互斥体就很类似,都是在gpioled_dev定义一个结构体来使用信号量/互斥体;然后在led_open中获取信号量,在led_release释放信号量,在led_init中初始化信号量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167054.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2、Kafka 生产者

3.1 生产者消息发送流程 3.1.1 发送原理 在消息发送的过程中&#xff0c;涉及到了两个线程——main 线程和 Sender 线程。在 main 线程 中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator&#xff0c; Sender 线程不断从 RecordAccumulator 中…

为什么短信验证码要设置有效期?

安全性&#xff1a;验证码的主要目的是为了验证用户的身份&#xff0c;防止恶意或未经授权的访问。如果验证码没有有效期&#xff0c;恶意用户或攻击者可以获取验证码后无限期地尝试使用它。通过设置有效期&#xff0c;可以限制验证码的生命周期&#xff0c;提高系统的安全性。…

跳跃游戏Ⅱ-----题解报告

题目&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 与Ⅰ不同的是&#xff0c;这次要求找出最小的跳跃次数。思路也很简单&#xff0c;在每一次跳跃之后都更新最远的跳跃距离。 举个列子&#xff1a; 输入&#xff1a;2,3,1,1,4 第一次…

看我为了水作业速通C++!

和java不太一样的一样的标题打个*&#xff0c;方便对比 基本架构* #include<iostream> using namespace std; int main() { system("pause"); return 0; } 打印* cout << "需要打印的内容" <<endl endl 是一个特殊的输出流控…

【Java基础面试三十八】、请介绍Java的异常接口

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;请介绍Java的异常接口 …

JAVA高级教程-Java Map(6)

目录 6、Map的使用 6、Map的使用 package Map01;import java.util.HashMap; import java.util.Map; import java.util.Set;/*** Map接口的使用*/ public class Demo01_HashMap {public static void main(String[] args) {Map<String,String> mapnew HashMap<>();ma…

Hadoop3教程(三十一):(生产调优篇)异构存储

文章目录 &#xff08;157&#xff09;异构存储概述概述异构存储的shell操作 &#xff08;158&#xff09;异构存储案例实操参考文献 &#xff08;157&#xff09;异构存储概述 概述 异构存储&#xff0c;也叫做冷热数据分离。其中&#xff0c;经常使用的数据被叫做是热数据&…

Android12之DRM架构(一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

JVM——JVM概述以及双亲委派机制

JVM探究 请你谈谈你对JVM的理解&#xff1f;Java8虚拟机和之前的有什么变化更新&#xff1f;什么是OOM&#xff0c;什么是栈溢出StackOverFlowError&#xff1f;怎么分析&#xff1f;JVM的常用调优参数有哪些&#xff1f;内存快照如何抓取&#xff1f;怎么分析Dump文件&#x…

【Java基础面试三十五】、谈谈你对面向接口编程的理解

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;谈谈你对面向接口编程的…

2022年亚太杯APMCM数学建模大赛B题高速列车的优化设计求解全过程文档及程序

2022年亚太杯APMCM数学建模大赛 B题 高速列车的优化设计 原题再现&#xff1a; 2022年4月12日&#xff0c;中国高铁复兴号CR450动车组在开放线上成功实现单车时速435公里&#xff0c;相对速度870公里&#xff0c;创造了高铁动车组列车穿越开放线和隧道速度的世界纪录。新一代…

npm常用命令与操作篇

npm简介 npm是什么 npm 的英文是&#xff0c;node package manager&#xff0c;是 node 的包管理工具 为什么需要npm 类比建造汽车一样&#xff0c;如果发动机、车身、轮胎、玻璃等等都自己做的话&#xff0c;几十年也做不完。但是如果有不同的厂商&#xff0c;已经帮我们把…

HTTP 协议的基本格式(部分)

要想了解HTTP&#xff0c;得先知道什么是HTTP&#xff0c;那么HTTP是什么呢&#xff1f;HTTP (全称为 "超文本传输协议") 是一种应用非常广泛的 应用层协议。那什么是超文本呢&#xff1f;那就是除了文本&#xff0c;还有图片&#xff0c;声音&#xff0c;视频等。 …

openHarmony UI开发

常用组件和布局方式 组件 ArkUI有丰富的内置组件&#xff0c;包括文本、按钮、图片、进度条、输入框、单选框、多选框等。和布局一样&#xff0c;我们也可以将基础组件组合起来&#xff0c;形成自定义组件。 按钮&#xff1a; Button(Ok, { type: ButtonType.Normal, stateEf…

python 之 矩阵相关操作

文章目录 1. **创建矩阵**&#xff1a;2. **矩阵加法**&#xff1a;3. **矩阵乘法**&#xff1a;4. **矩阵转置**&#xff1a;5. **元素级操作**&#xff1a;6. **汇总统计**&#xff1a;7. **逻辑操作**&#xff1a; 理解你的需求&#xff0c;我将为每个功能写一个单独的代码块…

Three.js + Tensorflow.js 构建实时人脸点云

本文重点介绍使用 Three.js 和 Tensorflow.js 实现实时人脸网格点云所需的步骤。 它假设你之前了解异步 javascript 和 Three.js 基础知识&#xff0c;因此不会涵盖基础知识。 该项目的源代码可以在此 Git 存储库中找到。 在阅读本文时查看该代码将会很有帮助&#xff0c;因为…

从零实现FFmpeg6.0+ SDL2播放器

FFmpeg6.0开发环境搭建播放器代码框架分析解复用模块开发实现包队列和帧队列设计音视频解码线程实现SDL2音频声音输出SDL2视频画面渲染-YUV显示音视频同步-基于音频 地址: https://xxetb.xet.tech/s/3NWJGf

软件工程与计算总结(二十)软件交付

软件交付是软件项目的结束阶段 &#xff0c;标志着软件开发任务的完成——其作为一个分水岭&#xff0c;区分了软件开发与软件维护两个既连续又不同的软件产品生存状态~ 在经历连续的辛苦工作之后&#xff0c;开发人员在胜利曙光之前难免会忽视软件交付阶段的一些工作——在准…

[每周一更]-(第68期):Excel常用函数及常用操作

日常工作&#xff0c;偶尔也会存在excel表格入库的情况&#xff0c;针对复杂的入库情况&#xff0c;一般都是代码编号&#xff0c;读文件-写db形式&#xff1b;但是有些简单就直接操作&#xff0c;但是 这些简单的入库不仅仅是直接入库&#xff0c;而是内容中有部分需要进行映射…

Egg.js项目EJS模块引擎

1.介绍 灵活的视图渲染&#xff1a;使用 egg-view-ejs 插件&#xff0c;你可以轻松地在 Egg.js 项目中使用 EJS 模板引擎进行视图渲染。EJS 是一种简洁、灵活的模板语言&#xff0c;可以帮助你构建动态的 HTML 页面。 内置模板缓存&#xff1a;egg-view-ejs 插件内置了模板缓存…