2022年亚太杯APMCM数学建模大赛B题高速列车的优化设计求解全过程文档及程序

2022年亚太杯APMCM数学建模大赛

B题 高速列车的优化设计

原题再现:

  2022年4月12日,中国高铁复兴号CR450动车组在开放线上成功实现单车时速435公里,相对速度870公里,创造了高铁动车组列车穿越开放线和隧道速度的世界纪录。新一代标准动车组“复兴号”是中国自主研发的具有完全知识产权的新一代高速列车。它集成了大量国内现代高科技,在牵引、制动、网络、转向架、车轴等关键技术上取得了重要突破。这是中国科技创新的又一重大成果。图1是高速铁路几何结构的简化模型。
在这里插入图片描述
  中国高速铁路的车头结构为子弹头,日本高速铁路采用鸭嘴结构。图2显示了四种典型高速铁路头部结构的简化模型,包括TP1、TP2、TP3和TP4。其中,高铁轨头结构的设计主要考虑空气阻力和噪声水平。
在这里插入图片描述
  高速铁路弹头的设计过程不仅要以空气动力学为基本原理,还要反复进行仿真和实验。为了实现车头和车身周围的气流、空气动力等相关参数之间的优化方案,可以经过数千次计算和实验进行优化。图3显示了流线型高速轨头结构的不同区域。
在这里插入图片描述
  请收集相关数据,建立几个数学模型,并回答以下问题:

  问题1:请建立高速铁路空气阻力的数学模型,考虑一般条件和极端天气(如雨、雪、风)下高速铁路几何形状与受力之间的关系,模拟圆锥形和四种典型高速铁路的空气阻力分布,如图2所示,并选择空气阻力最小的最佳高速铁路形状。

  问题2:请分析高铁轨头曲线弧度对空气阻力的影响,建立高铁外形优化模型,设计出最佳的高铁外形,使高铁受空气阻力最小,并绘制出优化后的高铁形状草图。

  问题3:请建立高铁产生噪声的数学模型,分析锥形和四种典型高铁产生的噪声强度,如图2所示,模拟它们各自的噪声分布,选择产生噪声最小的最佳高铁形状。

  问题4:请结合前三个问题的结果,建立高铁形状的综合优化模型,设计出最佳的高铁形状,同时提高高铁列车的速度,降低噪音。绘制高速铁路的形状草图,并给出相应的结构参数。

整体求解过程概述(摘要)

  随着计算领域的快速发展,追求高速、低噪声污染的气动外形显得尤为重要。本文建立了相应的数学模型来研究高速铁路的速度域和噪声域,并进行了仿真。

  对于问题1,基于标准𝑘 − 𝜀 模型,分别建立了四个初步的高速列车模型,并对通用车头进行了二维受力分析,并利用RWIND风洞软件对四个模型进行了仿真,定义了用于描述的Δ因子,并对每个模型的Δ因子进行了比较,得出TP1是空气阻力最小的最佳高速列车形状。

  对于问题2,我们将TP1分为5个部分,采用Pareto搜索方法对其进行优化和微调,并建立了优化的高铁模型。针对问题3,以及许多学者对高速列车噪声污染进行了研究,许多国家也出台了相应的限速规定。基于湍流的物理特性,我们对以85m/s速度行驶的高速列车进行了建模和分析,并得出结论,TP4是产生最小噪声的最佳高速列车形状。

  最后,我们结合TP1和TP4的特点,使用多目标粒子群算法设计了一种新的列车,该列车在风洞实验中具有更平衡的力分布,即良好的速度上限和对环境的低噪声,并且与Δ因子相比,新列车的Δ非常好。𝚫TP1=0.0105,𝚫TP4=0.0031,𝚫TPbest=0.0029。比较优化前后的模型可以发现,鼻锥高度减小,鼻锥长度增加,鼻锥变得更光滑;驾驶员室的高度向下调整,流线型的前半部分变得更窄,后半部分的宽度增加。

模型假设:

  1.不同高速铁路的材料相同。

  2.高铁是直的。

  3.风速相同。

  4.身体长度相同。

问题分析:

  问题1
  通过我们对流体连续性原理的分析,本质上流体在流动中的质量守恒,对于理想流体可以得到伯努利方程它是机械能守恒,对于实际流体可以得到泊肃耳定理它是粘性摩擦的存在,这种粘性摩擦会对流体和固体的相对运动产生一种阻力,据此建立空气阻力模型来研究高速铁路的空气阻力。当流体速度非常快时,会产生湍流。在这方面𝑘 − 𝜀 应用该模型求解湍流动能及其耗散率方程。对于四种高速铁路形状,在极端天气(如雨雪)下,我们使用受力分析方法来表示受力关系,对于不同形状的高速铁路,我们使用Blender软件制作了四个高速铁路前端模型,并对这四个模型进行了风洞实验,可以直观地感受到空气对每个部件的阻力,通过比较空气阻力分布来选择空气阻力分布,我们选择了空气阻力最小的高速铁路形状。最终的TP1是空气阻力最小的最佳高速铁路模型。

  问题2
  在TP1的基础上,基于Pareto搜索过程建立了优化模型,设计出空气阻力最小的最优高铁模型。

  问题3
  我们首先收集了相关的噪声数据,对各国高速列车(列车)的噪声有了一定的了解,然后得出当车速很快时,波面加速了积聚,使空气摩擦增加,噪声也随之增加。对此,建立了高速列车的外部空气动力学噪声模型,并通过湍流中的空气阻力模型提取每个节点的湍流动能湍流耗散率,从而确定每个节点的声功率。然后将Lighthill-Colle声学类比理论与高速铁路压力分布进行比较,实现了空气动力学噪声仿真。TP4最终被确定为产生最小噪声的高速铁路的最佳形状。

  问题4
  在第二个问题中Pareto搜索的基础上,我们使用多目标粒子群算法(MOPSO)结合TP1和TP4的特性来找到近似模型,并在风洞中对该模型进行模拟以获得相关数据。结合第三个问题中理论圆锥曲线的模拟值,优化模型𝚫TPbest=0.0029是TP1和TP4中Δ系数最小的(越小越好),与TP1相比降低了72.38%,降低了6.45%,验证了模型的可行性。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
present00=importdata(’ex00_.txt’);
present01=importdata(’ex01_.txt’);
present02=importdata(’ex02_.txt’);
present03=importdata(’ex03_.txt’);
present04=importdata(’ex04_.txt’);
a00=present00(1:300,3:3);
a01=present01(1:300,3:3);
a02=present02(1:300,3:3);
a03=present03(1:300,3:3);
a04=present04(1:300,3:3);
x=present00(1:300,1:1);
deltaY1 = (a01-a00).ˆ2;
deltaY2 = (a02-a00).ˆ2;
deltaY3 = (a03-a00).ˆ2;
deltaY4 = (a04-a00).ˆ2;
k1=sum(deltaY1);
k2=sum(deltaY2);
k3=sum(deltaY3);
k4=sum(deltaY4);
\begin{tikzpicture}
\draw[->](0,0.1)arc(165:120:5 and 3);
\draw[->](0,-0.3)arc(165:120:5 and 3);
\draw[->](0,-0.5)arc(165:120:5 and 3);
\draw[->](0,-0.7)arc(165:120:5 and 3);
\draw[->](0,-0.1)arc(165:120:5 and 3) ;
\draw[->](0,0.3)arc(165:120:5 and 3);
\draw[rotate around={93:(1.8,1.42)}](1.8,1.3) ellipse(0.5 and 0.3);
\draw[rotate around={-45:(0.4,-0.2)}](0,0) ellipse(0.3 and 0.15);
\end{tikzpicture}
\begin{tikzpicture}
\draw(0,0)arc(80:20:5 and 3);
\draw(0,1)arc(80:20:5 and 3);
\draw(0,-3)--(4,-3);
\draw(0.5,-3)--(0.5,-0.1);
\draw(2.8,-0.9)--(2.8,-3);
\draw(0.6,0.41) ellipse(0.2 and 0.49);
\draw(0.4,0.45) ellipse(0.2 and 0.48);
\draw[rotate around={-45:(3.2,-0.75)}](3.2,-0.75) ellipse(0.15 and 0.38);
\draw(2.5,-0.75)arc(149:100:0.8 and 1.4);
\node[left]at(0.5,-2){$h_{1}$};
\node[left]at(2.8,-2){$h_{2}$};
\node[above]at(0.5,1){$a_{1}b_{1}$};
\draw[->](-0.5,0.45)--(0.2,0.45);
\draw[->](3.8,-1.4)--(3.3,-0.9);
\node[below]at(3.8,-1.4){$p_{2}S_{2}$};
\node[above]at(-0.2,0.45){$p_{1}S_{1}$};
\node[above]at(3.2,-0.2){$a_{2}$};
\node[above]at(3.6,-0.6){$b_{2}$};
\end{tikzpicture}
\begin{tikzpicture}
\draw(2,2) ellipse(1 and 3);
\draw(2,2)ellipse(0.8 and 2.5);
\draw(10,2) ellipse(1 and 3);
\draw(10,2) ellipse(0.8 and 2.5);
\draw(2,-1)--(10,-1);
\draw(2,5)--(10,5);
\draw(2,-0.5)--(10,-0.5);
\draw(2,4.5)--(10,4.5);
\node[above]at (2,5){$a$};
\node[above]at (10,5){$b$};
\draw(2,-1.1)--(2,-2);
\draw(10,-1.1)--(10,-2);
\draw[->](6,-1.5)--(2,-1.5);
\draw[->](6.3,-1.5)--(10,-1.5);
\node[right]at(6,-1.5){$l$};
\draw[->](7,5.2)--(5,5.2);
\draw(1.9,5)--(0.1,5);
\draw(10,4.5)--(0.9,4.5);
\draw[->](5,4.3)--(7,4.3);
\draw(0.3,2)--(1.8,2);
\draw[->](2.1,2)--(4,2);
\draw(4.2,2)--(8,2);
\draw(8.2,2)--(10,2);
\draw(10.2,2)--(12,2);
\draw[->](0.5,3.8)--(0.5,5);
\node[below]at(0.5,3.8){$r+dr$};
\draw[->](0.5,3.3)--(0.5,2);
\draw[->](1,3.3)--(1,4.5);
\node[below]at(1,3.3){$r$};
\draw[->](1,3)--(1,2);
\node[below]at(10.5,2){$p_{b}$};
\node[above]at(6,5.2){$f_{r+dr}$};
\node[below]at(6,4.3){$f_{r}$};
\node[below]at(0.5,2){$P_{a}$};
\node[above]at(4,2){$v$};
\end{tikzpicture}
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167039.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

npm常用命令与操作篇

npm简介 npm是什么 npm 的英文是,node package manager,是 node 的包管理工具 为什么需要npm 类比建造汽车一样,如果发动机、车身、轮胎、玻璃等等都自己做的话,几十年也做不完。但是如果有不同的厂商,已经帮我们把…

HTTP 协议的基本格式(部分)

要想了解HTTP,得先知道什么是HTTP,那么HTTP是什么呢?HTTP (全称为 "超文本传输协议") 是一种应用非常广泛的 应用层协议。那什么是超文本呢?那就是除了文本,还有图片,声音,视频等。 …

openHarmony UI开发

常用组件和布局方式 组件 ArkUI有丰富的内置组件,包括文本、按钮、图片、进度条、输入框、单选框、多选框等。和布局一样,我们也可以将基础组件组合起来,形成自定义组件。 按钮: Button(Ok, { type: ButtonType.Normal, stateEf…

python 之 矩阵相关操作

文章目录 1. **创建矩阵**:2. **矩阵加法**:3. **矩阵乘法**:4. **矩阵转置**:5. **元素级操作**:6. **汇总统计**:7. **逻辑操作**: 理解你的需求,我将为每个功能写一个单独的代码块…

Three.js + Tensorflow.js 构建实时人脸点云

本文重点介绍使用 Three.js 和 Tensorflow.js 实现实时人脸网格点云所需的步骤。 它假设你之前了解异步 javascript 和 Three.js 基础知识,因此不会涵盖基础知识。 该项目的源代码可以在此 Git 存储库中找到。 在阅读本文时查看该代码将会很有帮助,因为…

从零实现FFmpeg6.0+ SDL2播放器

FFmpeg6.0开发环境搭建播放器代码框架分析解复用模块开发实现包队列和帧队列设计音视频解码线程实现SDL2音频声音输出SDL2视频画面渲染-YUV显示音视频同步-基于音频 地址: https://xxetb.xet.tech/s/3NWJGf

软件工程与计算总结(二十)软件交付

软件交付是软件项目的结束阶段 ,标志着软件开发任务的完成——其作为一个分水岭,区分了软件开发与软件维护两个既连续又不同的软件产品生存状态~ 在经历连续的辛苦工作之后,开发人员在胜利曙光之前难免会忽视软件交付阶段的一些工作——在准…

[每周一更]-(第68期):Excel常用函数及常用操作

日常工作,偶尔也会存在excel表格入库的情况,针对复杂的入库情况,一般都是代码编号,读文件-写db形式;但是有些简单就直接操作,但是 这些简单的入库不仅仅是直接入库,而是内容中有部分需要进行映射…

Egg.js项目EJS模块引擎

1.介绍 灵活的视图渲染:使用 egg-view-ejs 插件,你可以轻松地在 Egg.js 项目中使用 EJS 模板引擎进行视图渲染。EJS 是一种简洁、灵活的模板语言,可以帮助你构建动态的 HTML 页面。 内置模板缓存:egg-view-ejs 插件内置了模板缓存…

【Java】ArrayList集合使用

ArrayList集合常见方法 方法名称说明public boolean add(E e)将元素插入到指定位置的arraylist中,返回值:返回boolean类型public E remove(int index)删除 arraylist里的单个元素,返回值:返回删除之前的元素public E set(int inde…

LeetCode:2316. 统计无向图中无法互相到达点对数(C++)

目录 2316. 统计无向图中无法互相到达点对数 题目描述: 实现代码与解析: 并查集 原理思路: 2316. 统计无向图中无法互相到达点对数 题目描述: 给你一个整数 n ,表示一张 无向图 中有 n 个节点,编号为…

【已解决】Unity 使用NPOI 写word文档报错:System.TypeLoadException:……0.86.0.518

报错显示 System.TypeLoadException: Could not resolve type with token 01000080 from typeref (expected class ICSharpCode.SharpZipLib.Zip.UseZip64 in assembly ICSharpCode.SharpZipLib, Version0.86.0.518, Cultureneutral, PublicKeyToken1b03e6acf1164f73) at NPOI.…

三种字符串格式化方法(%、format、f-string)

一、使用 % name 第一帅 print(我是宇宙无敌天下%s % name) age 18 print(我是宇宙无敌天下%s,我今年%d岁%(name,age)) price 5.99print(白心火龙果单价是%.1f元一斤%price)二、使用 format 在字符串中,使用{ }进行占位,然后在字符串后…

【C语言】用函数实现模块化程序设计

前言:如果把所有的程序代码都写在一个主函数(main函数)中,就会使主函数变得庞杂、头绪不清,使阅读和维护程序变得困难。此外,有时程序中要多次实现某一功能,如果重新编写实现此功能就会使得程序冗长、不精炼。 &#x…

pensieve运行的经验

1运行run_videopy时出现如下问题: cmd: Union[List[str], str], ^ SyntaxError: invalid syntax原因是EasyProcess版本与python版本不对应,解决办法可见之前这篇博客:SyntaxError: invalid syntax。 2解决完上述问题后,输…

FreeSWITCH 1.10.10 简单图形化界面12 - 注册IMS

FreeSWITCH 1.10.10 简单图形化界面12 - 注册IMS 0、 界面预览1、IMS注册-SIP中继基本设置界面2、IMS注册-SIP中继呼叫设置3、IMS中继-代理设置界面4、IMS注册-SIP中继状态界面5、IMS注册-SIP中继详细状态界面6、IMS注册-SIP中继代拨号码优先界面 FreeSWITCH界面安装参考&#…

系统设计 - 我们如何通俗的理解那些技术的运行原理 - 第五部分:支付系统

本心、输入输出、结果 文章目录 系统设计 - 我们如何通俗的理解那些技术的运行原理 - 第五部分:支付系统前言如何学习支付系统信用卡为什么被称为“银行最赚钱的产品”?VISA/万事达卡如何赚钱?步骤说明为什么开证行应该得到补偿 当我们在商家…

万宾科技智能井盖传感器特点介绍

当谈论城市基础设施的管理和安全时,井盖通常不是第一项引人注目的话题。然而,传统井盖和智能井盖传感器之间的差异已经引起了城市规划者和工程师的广泛关注。这两种技术在功能、管理、安全和成本等多个方面存在着显著的差异。 WITBEE万宾智能井盖传感器E…

并发编程-线程池ThreadPoolExecutor底层原理分析(一)

问题: 线程池的核心线程数、最大线程数该如何设置? 线程池执行任务的具体流程是怎样的? 线程池的五种状态是如何流转的? 线程池中的线程是如何关闭的? 线程池为什么一定得是阻塞队列? 线程发生异常&…

优维低代码实践:片段

优维低代码技术专栏,是一个全新的、技术为主的专栏,由优维技术委员会成员执笔,基于优维7年低代码技术研发及运维成果,主要介绍低代码相关的技术原理及架构逻辑,目的是给广大运维人提供一个技术交流与学习的平台。 优维…