17.推荐系统的在线学习与实时更新

接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。

推荐系统的在线学习与实时更新

在线学习的概念

在线学习(Online Learning)是一种机器学习方法,与传统的批量学习(Batch Learning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这使得模型能够快速适应新的数据,保持推荐系统的实时性。

实时更新的必要性

在推荐系统中,用户的兴趣和行为是动态变化的。如果推荐系统不能及时更新,就无法提供准确和相关的推荐。因此,实时更新是推荐系统的一个重要特性。

实现在线学习与实时更新的方法
  1. 增量更新模型

    增量更新模型是一种常见的在线学习方法,它能够在新数据到达时逐步更新模型参数。以下是几种常见的增量更新模型:

    • 增量矩阵分解:矩阵分解是一种常用的推荐算法,它将用户-项目矩阵分解为两个低维矩阵。在增量矩阵分解中,当有新的评分数据到达时,可以通过增量更新的方式调整用户和项目的特征向量。

    • 在线梯度下降:在线梯度下降是一种常见的在线学习算法,它能够在每一批新数据到达时更新模型参数。常见的在线梯度下降算法包括SGD(随机梯度下降)和Adam。

  2. 流处理框架

    使用流处理框架(如 Apache Kafka、Apache Flink 和 Apache Storm)可以实现数据流的实时处理和模型更新。这些框架能够处理大规模的实时数据流,并且可以与机器学习库(如 TensorFlow 和 PyTorch)集成,进行在线学习。

    • Apache Kafka:Kafka 是一个分布式流处理平台,能够实时处理高吞吐量的数据流。可以使用 Kafka 作为数据管道,将用户行为数据实时传输到推荐系统。

    • Apache Flink:Flink 是一个流处理框架,支持实时数据处理和复杂事件处理。可以使用 Flink 实现推荐系统的实时更新和在线学习。

实例:使用在线梯度下降更新推荐模型

以下是一个使用 Python 和在线梯度下降算法实现推荐系统在线学习的简单示例:

import numpy as npclass OnlineMatrixFactorization:def __init__(self, num_users, num_items, num_factors, learning_rate, reg_param):self.num_users = num_usersself.num_items = num_itemsself.num_factors = num_factorsself.learning_rate = learning_rateself.reg_param = reg_param# Initialize user and item latent factor matricesself.user_factors = np.random.normal(0, 0.1, (num_users, num_factors))self.item_factors = np.random.normal(0, 0.1, (num_items, num_factors))def predict(self, user, item):return np.dot(self.user_factors[user], self.item_factors[item])def update(self, user, item, rating):prediction = self.predict(user, item)error = rating - prediction# Update user and item latent factors using SGDself.user_factors[user] += self.learning_rate * (error * self.item_factors[item] - self.reg_param * self.user_factors[user])self.item_factors[item] += self.learning_rate * (error * self.user_factors[user] - self.reg_param * self.item_factors[item])# Example usage
num_users = 100
num_items = 100
num_factors = 10
learning_rate = 0.01
reg_param = 0.1model = OnlineMatrixFactorization(num_users, num_items, num_factors, learning_rate, reg_param)# Simulate streaming data
streaming_data = [(user, item, rating) for user in range(num_users) for item in range(num_items)]for user, item, rating in streaming_data:model.update(user, item, rating)# Predict the rating for a specific user-item pair
predicted_rating = model.predict(0, 0)
print("Predicted rating:", predicted_rating)

在这个示例中,我们实现了一个简单的在线矩阵分解模型,并使用随机梯度下降算法在新数据到达时进行模型更新。你可以将这个模型集成到流处理框架中,实现推荐系统的在线学习和实时更新。

总结

推荐系统的在线学习与实时更新是确保推荐结果实时性和相关性的关键技术。我们介绍了在线学习的概念、实时更新的必要性,以及如何通过增量更新模型和流处理框架实现在线学习。通过这些技术,推荐系统可以快速适应用户行为的变化,提供更加精准和相关的推荐。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/16708.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(一)获取数据和读取数据

获取公开数据 下载、爬虫、API 一些公开数据集网站: 爬虫: 发送请求获取网页源代码——解析网页源代码内容,提取数据 通过公开API获取: API定义了两个程序之间的服务合约,即双方是如何使用请求和响应来进行通讯的…

在MacBook Air上本地部署大模型deepseek指南

随着大模型技术的兴起,越来越多的人开始关注如何在本地部署这些强大的AI模型。如果你也想体验大模型的魅力,那么这篇文章将指导你如何在你的MacBook Air上本地部署大模型. 工具准备 为了实现本地部署,你需要以下工具: Ollama&a…

Windows中使用Docker安装Anythingllm,基于deepseek构建自己的本地知识库问答大模型,可局域网内多用户访问、离线运行

文章目录 Windows中使用Docker安装Anythingllm,基于deepseek构建自己的知识库问答大模型1. 安装 Docker Desktop2. 使用Docker拉取Anythingllm镜像2. 设置 STORAGE_LOCATION 路径3. 创建存储目录和 .env 文件.env 文件的作用关键配置项 4. 运行 Docker 命令docker r…

git学习【个人记录b站尚硅谷】

git学习 Git基本命令操作设置用户签名初始化本地库添加文件从工作区到暂存区将文件从暂存区添加到本地库修改文件重新提交 Git分支Github操作创建远程库上传到远程库克隆到本地文件夹拉取远程库最新版本到本地 总结 Git基本命令操作 设置用户签名 git config --global user.n…

【R语言】t检验

一、基本介绍 t检验(t-test)是用于比较两个样本均值是否存在显著差异的一种统计方法。 t.test()函数的调用格式: t.test(x, yNULL, alternativec("two.sided", "less", "greater"), mu0, pairFALSE, var.eq…

TDengine 产品由哪些组件构成

目 录 背景产品生态taosdtaosctaosAdaptertaosKeepertaosExplorertaosXtaosX Agent应用程序或第三方工具 背景 了解一个产品,最好从了解产品包括哪些内容开始,我这里整理了一份儿 TDegnine 产品包括有哪些组件,每个组件作用是什么的说明&a…

实现限制同一个账号最多只能在3个客户端(有电脑、手机等)登录(附关键源码)

如上图,我的百度网盘已登录设备列表,有一个手机,2个windows客户端。手机设备有型号、最后登录时间、IP等。windows客户端信息有最后登录时间、操作系统类型、IP地址等。这些具体是如何实现的?下面分别给出android APP中采集手机信…

使用 Docker 安装 Open WebUI 并集成 Ollama 的 DeepSeek 模型

文章目录 使用 Docker 安装 Open WebUI 并集成 Ollama 的 DeepSeek 模型前提条件1. 安装ollama2. 拉取deepseek的模型3. Open-WebUI 说明4. 启动容器文档的方法如下优化命令(可选)1. 增加了健康检查机制(--health-cmd)2. 使 WebUI…

Untiy3d 铰链、弹簧,特殊的物理关节

(一)铰链组件 1.创建一个立方体和角色胶囊 2.给角色胶囊挂在控制脚本和刚体 using System.Collections; using System.Collections.Generic; using UnityEngine;public class plyer : MonoBehaviour {// Start is called once before the first execut…

【NLP 21、实践 ③ 全切分函数切分句子】

当无数个自己离去,我便日益坦然 —— 25.2.9 一、jieba分词器 Jieba 是一款优秀的 Python 中文分词库,它支持多种分词模式,其中全切分方式会将句子中所有可能的词语都扫描出来。 1.原理 全切分方式会找出句子中所有可能的词语组合。对于一…

团结引擎 OpenHarmony 平台全面支持 UAAL,实现引擎能力嵌入原生应用

团结引擎1.4版本已于近日正式发布!在这一版本中,OpenHarmony 平台迎来了一个具有里程碑意义的更新:全面支持 Used as a Library(UAAL)。UAAL 这一技术方案,具有将引擎嵌入原生应用的独特能力,其…

自己部署DeepSeek 助力 Vue 开发:打造丝滑的标签页(Tabs)

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 自己…

DeepSeek渣机部署编程用的模型,边缘设备部署模型

DeepSeek渣机部署编程用的模型,边缘设备部署模型 文章目录 DeepSeek渣机部署编程用的模型,边缘设备部署模型前言一、python代码二、构建一个简单的前端来接入接口2.读入数据 总结 前言 也许大家伙都想完成一些部署DeepSeek的东西,不过部署并…

VS2019打开《喜缺全书算法册》附带代码的方法兼述单元测试

下载地址(大量的题目和测试用例) 下载:地址一,几乎实时更新 GitCode下载。 下载地址二,不定期更新csdn打包下载 如果这两个链接打不开,可能是这两个资源处于审核状态,快则几分钟,慢则2天。 可以加本文末的&#xff31…

急停信号的含义

前言: 大家好,我是上位机马工,硕士毕业4年年入40万,目前在一家自动化公司担任软件经理,从事C#上位机软件开发8年以上!我们在开发C#的运动控制程序的时候,一个必要的步骤就是确认设备按钮的急停…

小白学网络安全难吗?需要具备哪些条件?

作为一名零基础小白,想要转行IT学习一门新技术,且上手难度低、就业前景好、薪资待遇高、入行门槛低,网络安全是最值得的选择,掌握它之后你可以获得一份收入不错的工作。那么零基础学网络安全好学吗?以下是具体内容介绍。 首先&am…

IEEE期刊Word导出PDF注意事项

在系统上提交论文时候一般要求PDF文档,但是word直接转PDF可能存在一些问题: 部分图片不清晰。字体未嵌入PDF。间距发生了变化。字体发生了变化。一张图片显示不完全。 下面介绍word转PDF最稳妥的技巧以及如何实现全部字体的嵌入。 1. 操作流程 ① 另…

CEF132 编译指南 MacOS 篇 - depot_tools 安装与配置 (四)

1. 引言 在 CEF132(Chromium Embedded Framework)的编译过程中,depot_tools 扮演着举足轻重的角色。这套由 Chromium 项目精心打造的脚本和工具集,专门用于获取、管理和更新 Chromium 及其相关项目(包括 CEF&#xff…

【C++高并发服务器WebServer】-16:UDP简单实现

本文目录 一、UDP通信流程二、UDP API2.1 sendto()2.2 recvfrom() 一、UDP通信流程 UDP通信的流程比较简单&#xff0c;下面这张图可以总结。 二、UDP API 2.1 sendto() UDP相关头文件如下。 #include <sys/types.h> #include <sys/socket.h>ssize_t sendto(…

k8s管理工具之lens

什么是lens Lens 是当前市场上最强大的K8S IDE。它是一个独立的单机应用&#xff0c;可以同时运行在macOS、Windows和Linux上。 作为K8S IDE&#xff0c;该有的它基本都有了&#xff01; 集群管理 导入已有集群 首先&#xff0c;你需要在 Lens 中添加你的 Kubernetes 集群。点…