这篇文章将详细介绍 STM32使用 cubeMX驱动超声波测距 。
文章目录
- 前言
- 一、超声波模块
- `测距原理` :
- 二、cubeMX 配置
- 三、实验程序
- 总结
前言
- 实验材料:STM32F103C8T6开发板, HC-SR04 超声波模块。
- 所需软件:keil5 , cubeMX ,AiThinker Serial Tool 串口助手。
- 实验目的:了解 STM32使用 cubeMX驱动超声波 。
- 实验:超声波测距。
一、超声波模块
HC-SR04 超声波测距模块可提供 2cm-400cm 的非接触式距离感测功能。有4 个引脚:VCC, GND, Trig(信号触发引脚),Echo(接收返回信号)。
当超声波发出一个信号时,信号碰到物体或阻碍后会立即返回。只要得到 信号往返传输的时间就可以测出距离。
参数列表:
工作电压 VCC : 5 V
最远射程 : 4m
最近射程 :2cm
信号传输速度 :340m/s
测距原理
:
下图是 超声波时序图。
-
首先让超声波的 trig 引脚发送触发信号:一个 10 us 的 TTL 高电平。
-
然后模块内部会自动循环发出 8 个 40 KHZ 的脉冲。
-
接着 超声波的 echo 引脚会接收到回返信号。
-
最后只需要计算出这段回返信号的高电平时间 再带入公式
S = 340(m/s) * T(s) / 2
即可算出距离.这里是往返时间,要除 2。(因为 高电平的时间就是信号往返传输的时间)
二、cubeMX 配置
对于基础的配置可以看我之前的文章。
- 由于 要发送一个 10us 的高电平,这个时间用定时器进行配置,所以这里我
使用 定时器 2 进行延时
。(尽量不要使用 HAL_Delay 函数,多次使用会导致程序卡顿)
这里选择内部时钟源,并配置相关参数。这里配置的参数是 1us 延时。
- 我们还需要 一个定时器去 计算回返信号的高电平时间。使用定时器3。配置的定时时间依然是 1us。
如果对 定时器的定时时长有不了解的可以参考我之前的文章:最详细STM32,cubeMX 定时器
- 需要将测出的距离使用串口助手打印出来,所以这里需要使用一个 串口 USART2.(使用 异步传输)
如果对 串口的配置有不了解的可以参考我之前的文章:最详细STM32,cubeMX串口发送,接收数据
- 对于检测 是否接收到 回返信号 ,可以使用外部中断。
超声波需要两个引脚分别用来 发送触发信号 ,接收回返信号。所以,这里我使用 PB3 用来 发送触发信号
,设置为输出引脚。使用 PB6 接收信号
,并将其设置为 外部中断模式。
如果对 外部中断的配置有不了解的可以参考我之前的文章:STM32不使用 cubeMX实现外部中断
-
并将 PB6 设置为 双边沿触发中断。
-
并将外部中断使能。
三、实验程序
sr04.h:
#ifndef _SR04_H_
#define _SR04_H_#include <stdio.h>
#include "main.h"#define Trigger_ON HAL_GPIO_WritePin(GPIOB,GPIO_PIN_3,GPIO_PIN_SET)
#define Trigger_OFF HAL_GPIO_WritePin(GPIOB,GPIO_PIN_3,GPIO_PIN_RESET)void Delay_us(uint16_t us); // 使用定时器2编写的延时函数
void Trigger_signal(void); // 发送 10us 的触发信号#endif
sr04.c:
#include "sr04.h"int distance_cm = 0;extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim3;/* 延时函数(单位 us) */
void Delay_us(uint16_t us)
{uint16_t time = 0xffff - us - 5;__HAL_TIM_SET_COUNTER(&htim2,time); // 设置 定时器2 的值HAL_TIM_Base_Start(&htim2); // 开启定时器2while(time < 0xffff-5){time = __HAL_TIM_GET_COUNTER(&htim2); // 获取定时器2 值}HAL_TIM_Base_Stop(&htim2); // 停止 定时器2
}/* 发送 10us 的触发信号 */
void Trigger_signal(void)
{Trigger_ON; // 发送高电平Delay_us(10); // 延时 10 usTrigger_OFF; // 发送低电平
}/* 外部中断回调函数 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{ static uint32_t time_us = 0;if(GPIO_Pin == GPIO_PIN_6){if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_6)){HAL_TIM_Base_Start(&htim3); // 开启定时器3(开始计时)__HAL_TIM_SetCounter(&htim3,0); // 清空定时器3}else if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_6) == 0){HAL_TIM_Base_Stop(&htim3); //关闭定时器3(停止计时)time_us = __HAL_TIM_GetCounter(&htim3); // 获取高电平时间printf("time_us : %d\r\n", time_us);distance_cm = time_us * 340/2*0.000001*100;printf("distance_cm is %d cm\r\n", distance_cm);time_us = 0;}}
}
对于串口发送数据,可以使用重定义函数,简化代码:
int fputc(int ch,FILE* f)
{while(HAL_UART_Transmit(&huart2,(uint8_t*)&ch,sizeof(ch),1000) != HAL_OK);return 0;
}
测试程序:
在 while 循环中持续发送触发信号。
int count = 0;while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 *//* 每 50 ms 发送一次触发信号 */if(HAL_GetTick() - count > 50){count = HAL_GetTick();Trigger_signal();} }
HAL_GetTick() 函数 用来获取当前的时间。可以看到这个函数返回 uwTick
变量,在 HAL_IncTick() 中一直增加。uwTick
变量是从STM32 开机就开始计时。 1 uwTick
就是 1ms.
总结
下一篇文章为大家介绍 STM32 驱动蓝牙的实现。