分类预测 | MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测

分类预测 | MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测

目录

    • 分类预测 | MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测,运行环境Matlab2021b及以上;
2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和门控循环单元(GRU)的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率,隐藏层节点,正则化系数,这3个关键参数。
程序语言为matlab,程序可出分类效果图,混淆矩阵图。
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/169234.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

访问控制2

文章目录 主要内容一.Role和ClusterRole1.ClusterRole示例,创建一个名为test-clusterrole且仅有创建Pod和deployment的集群角色代码如下(示例): 2.YAML文件创建代码如下(示例): 3.将udbs用户和Clusterrole进行绑定&…

032-第三代软件开发-Popup弹窗

第三代软件开发-Popup弹窗 文章目录 第三代软件开发-Popup弹窗项目介绍Popup弹窗官方示例项目中的代码 之前写过一个Popup抄抄别人的dimvisible 和 Open 区别 与 Dialog有啥区别其他总结一下 关键字: Qt、 Qml、 Popup、 弹窗、 modal 项目介绍 欢迎来到我们的…

【计算机网络】TCP 协议的相关特性

TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的协议。以下是TCP协议的相关特性: 可靠性:TCP通过确认和重传机制保证数据的可靠传输。 面向连接:TCP在传输数据前需要先建立连接。连接的建立过程包括三次握手…

号外!百度Comate代码助手全新上线SaaS服务 - 免费申请试用+深入教程解读!

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

专业软件测评中心分享:科技成果验收测试报告的作用

科技成果验收测试是科技项目在开发完成后进行的一项测试,旨在检测科技项目的成果是否符合预期的技术指标和效果,以及是否符合用户需求和行业标准。验收测试报告是科技成果验收的重要依据,用于记录和证明科技成果的测试结果和性能表现。 一、…

Java入门讲解(1)---让你瞬间明白如何安装jdk

博主有话说:学习这个东西一定要持之以恒!!!博主之前因为点事情半个月没学习,重新来过时,发现自己错过好多知识,正在一点一点往回补,博客也会陆续开始更新,希望大家多多支…

安防视频监控平台EasyCVR新版(V.3.4)平台界面更新2.0

视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多路视频流&#…

Mask Free VIS笔记(CVPR2023 不需要mask标注的实例分割)

paper: Mask-Free Video Instance Segmentation github 一般模型学instance segmentation都是要有mask标注的, 不过mask标注既耗时又枯燥,所以paper中仅用目标框的标注来实现实例分割。 主要针对视频的实例分割。 之前也有box-supervised实例分割&…

MySQL执行计划分析

执行计划中的常见的列的解释: type system/const :用户主键索引或者唯一索引查询时,只能匹配 1 条数据。一般可以对 sql 查询语句优化成一个常量,那么 type 一般就是 system 或者 const,system 是 const 的一个特例&…

网络安全—自学笔记

目录 一、自学网络安全学习的误区和陷阱 二、学习网络安全的一些前期准备 三、网络安全学习路线 四、学习资料的推荐 想自学网络安全(黑客技术)首先你得了解什么是网络安全!什么是黑客! 网络安全可以基于攻击和防御视角来分类…

VSCode安装使用(含插件保姆级教程)

前言 工欲善其事,必先利其器 对于我们每一位软件工程师来说,都要有自己顺手的 IDE 开发工具,它就是我们的武器。 一个好用的 IDE 不仅能提升我们的开发效率,还能让我们保持愉悦的心情,这样才是非常 Nice 的状态 &…

unity游戏画质设置功能实现

在游戏中往往会出现游戏画质设置的功能。 如图: 这个功能是怎么实现完成的呢? 一、目标:实现切换画质功能 二、了解unity支持的画质 首先要了解unity中共支持多少种画质。 在代码中也可以进行打印。 方法如下: void Start …

大河弯弯:CSS 文档流与三大元素显示模式

文章目录 参考环境文档流概念三大显示模式 内联元素概念常见的内联元素宽高由内容决定 块级元素概念常见的块级元素宽度受容器影响,高度受内容影响 内联块级元素概念常见的内联块级元素折中方案 设置元素的显示模式display 属性内联元素与块级元素的切换为什么要通过…

【CSS】常见 CSS 布局

1. 响应式布局 <!DOCTYPE html> <html><head><title>简单的响应式布局</title><style>/* 全局样式 */body {font-family: Arial, sans-serif;margin: 0;padding: 0;}/* 头部样式 */header {background-color: #333;color: #fff;padding: …

【JVM系列】- 探索·运行时数据区的私有结构

探索运行时数据区的私有结构 文章目录 探索运行时数据区的私有结构运行时数据区的结构与概念认识线程了解守护线程和普通线程JVM系统线程 程序计数器&#xff08;PC寄存器&#xff09;概述PC寄存器的特点PC寄存器的作用 透过案例了解寄存器为什么需要用PC寄存器来存放字节码的指…

随机森林算法(Random Forest)的二分类问题

二分类问题 1. 数据导入2. RF模型构建2.1 调参&#xff1a;mtry和ntree2.2 运行模型 3. 模型测试4.绘制混淆矩阵5.绘制ROC曲线6. 参考 1. 数据导入 library(dplyr) #数据处理使用 library(data.table) #数据读取使用 library(randomForest) #RF模型使用 library(caret) # 调参…

河南工业大学人工智能与大数据学院学子在第三届“火焰杯”软件测试开发选拔赛中 取得佳绩

近日&#xff0c;第三届“火焰杯”软件测试开发选拔赛落下帷幕&#xff0c;我校人工智能与大数据学院选派的多名参赛选手在王雪涛老师的指导下&#xff0c;经过激烈的角逐&#xff0c;取得优异成绩。其中&#xff0c;何鸿彬&#xff0c;贾文聪获得决赛二等奖&#xff0c;王静宇…

【前段基础入门之】=>CSS3新增渐变颜色属性

导语&#xff1a; CSS3 新增了&#xff0c;渐变色 的解决方案&#xff0c;这使得我们可以绘制出更加生动的炫酷的的配色效果 线性渐变 多个颜色之间的渐变&#xff0c; 默认从上到下渐变 background-image: linear-gradient(red,yellow,green); /*默认从上到下渐变*/默认从上…

常用Web安全扫描工具汇整

漏洞扫描是一种安全检测行为&#xff0c;更是一类重要的网络安全技术&#xff0c;它能够有效提高网络的安全性&#xff0c;而且漏洞扫描属于主动的防范措施&#xff0c;可以很好地避免黑客攻击行为&#xff0c;做到防患于未然。 1、AWVS Acunetix Web Vulnerability Scanner&a…

javaEE -5(8000字详解多线程)

一&#xff1a;JUC(java.util.concurrent) 的常见类 1.1 ReentrantLock 可重入互斥锁. 和 synchronized 定位类似, 都是用来实现互斥效果, 保证线程安全&#xff0c;ReentrantLock 也是可重入锁. “Reentrant” 这个单词的原意就是 “可重入” ReentrantLock 的用法&#xf…