0基础学习PyFlink——使用PyFlink的SQL进行字数统计

在《0基础学习PyFlink——Map和Reduce函数处理单词统计》和《0基础学习PyFlink——模拟Hadoop流程》这两篇文章中,我们使用了Python基础函数实现了字(符)统计的功能。这篇我们将切入PyFlink,使用这个框架实现字数统计功能。

PyFlink安装

安装Python

sudo apt install python3.10
sudo ln -s /usr/bin/python3.10 /usr/bin/python

安装虚拟环境

sudo apt install python3.10-venv

创建工程所在文件夹,并创建虚拟环境

mkdir pyflink-test
cd pyflink-test
python -m venv .env

进入虚拟环境,并安装PyFlink

source .env/bin/activate
pip3.10 install apache-flink

统计代码

Flink为开发者提供了如下不同层级的抽象。本篇我们将尽量使用SQL来实现功能。
在这里插入图片描述

创建环境

执行环境用于设置任务的属性(batch还是stream),以及一些运行时参数(parallelism.default等)。
和Hadoop不同的是,Flink是流批一体(既可以处理流,也可以处理批处理)的引擎,而前者是批处理引擎。
批处理很好理解,即给一批数据,我们一次性、成批处理完成。
而流处理则是指,数据源源不断进入引擎,没有尽头。
本文不对此做过多展开,只要记得本例使用的是批处理模式(in_batch_mode)即可。

import argparse
import logging
import sysfrom pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment)def word_count(input_path):config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)

Source

在前两篇文章中,我们使用内存中的常规结构体,如dict等来保存Map过后的数据。而本文介绍的SQL方式,则是通过Table(表)的形式来存储,即输入的数据会Map到一张表中

    # define the sourcemy_source_ddl = """create table source (word STRING) with ('connector' = 'filesystem','format' = 'csv','path' = '{}')""".format(input_path)t_env.execute_sql(my_source_ddl).print()tab = t_env.from_path('source')

这张表只有一个字段——String类型的word。它用于记录被切分后的一个个字符串。
这儿有个关键字with。它可以用于描述数据读写相关信息,即完成数据读写相关的设置。
connector用于指定连接方式,比如filesystem是指文件系统,即数据读写目标是一个文件;jdbc则是指一个数据库,比如mysql;kafka则是指一个Kafka服务。
format用于指定如何把二进制数据映射到表的列上。比如CSV,则是用“,”进行列的切割。

Execute

    # execute insertmy_select_ddl = """select word, count(1) as `count`from sourcegroup by word"""t_env.execute_sql(my_select_ddl).wait()

上述SQL我们按source表中的word字段聚类,统计每个字符出现的个数。
完整输出如下

Using Any for unsupported type: typing.Sequence[~T]
No module named google.cloud.bigquery_storage_v1. As a result, the ReadFromBigQuery transform *CANNOT* be used with `method=DIRECT_READ`.
OK
+--------------------------------+----------------------+
|                           word |                count |
+--------------------------------+----------------------+
|                              A |                    3 |
|                              B |                    1 |
|                              C |                    2 |
|                              D |                    2 |
|                              E |                    1 |
+--------------------------------+----------------------+
5 rows in set

完整代码

# sql_print.py
import argparse
import logging
import sysfrom pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment)def word_count(input_path):config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)# define the sourcemy_source_ddl = """create table source (word STRING) with ('connector' = 'filesystem','format' = 'csv','path' = '{}')""".format(input_path)t_env.execute_sql(my_source_ddl).print()tab = t_env.from_path('source')my_select_ddl = """select word, count(1) as `count`from sourcegroup by word"""t_env.execute_sql(my_select_ddl).print()if __name__ == '__main__':logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")parser = argparse.ArgumentParser()parser.add_argument('--input',dest='input',required=False,help='Input file to process.')argv = sys.argv[1:]known_args, _ = parser.parse_known_args(argv)word_count(known_args.input)

测试的输入文件

“A”,
“B”,
“C”,
“D”,
“A”,
“E”,
“C”,
“D”,
“A”,

运行的指令是

python sql_print.py --input input1.csv

参考资料

  • https://nightlies.apache.org/flink/flink-docs-master/zh/docs/concepts/overview/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/170383.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue中使用Web Serial API连接串口,实现通信交互

Vue中使用Web Serial API连接串口,实现通信交互 Web Serial API,web端通过串口与硬件通信; 该API是JS本身 navigator 对象上就独有的,所以与Vue和React框架开发都没有太大的关系, 串口是一个双向通信接口,允许字节发送…

Visual Studio Code (VS Code)安装教程

Visual Studio Code(简称“VS Code”)。 1.下载安装包 VS Code的官网: Visual Studio Code - Code Editing. Redefined 首先提及一下,vscode是不需要破解操作的; 第一步,看好版本,由于我的系…

几个Web自动化测试框架的比较:Cypress、Selenium和Playwright

介绍:Web自动化测试框架对于确保Web应用程序的质量和可靠性至关重要。它们帮助开发人员和测试人员自动执行重复性任务,跨多个浏览器和平台执行测试,并在开发早期发现问题。 以下仅代表作者观点: 本文探讨来3种流行的Web自动化测…

17 结构型模式-享元模式

1 享元模式介绍 2 享元模式原理 3 享元模式实现 抽象享元类可以是一个接口也可以是一个抽象类,作为所有享元类的公共父类, 主要作用是提高系统的可扩展性. //* 抽象享元类 public abstract class Flyweight {public abstract void operation(String extrinsicState); }具体享…

【计算机网络】UDP的报文结构和注意事项

UDP(User Datagram Protocol,用户数据报协议)是一种无连接的协议,它在传输层中提供了简单、不可靠的数据传输服务。与TCP(Transmission Control Protocol,传输控制协议)不同,UDP不需要建立连接&…

使用Redis部署 PHP 留言板应用

使用Redis部署 PHP 留言板应用 启动 Redis 领导者(Leader)启动两个 Redis 跟随者(Follower)公开并查看前端服务清理 启动 Redis 数据库 创建 Redis Deployment apiVersion: apps/v1 kind: Deployment metadata:name: redis-le…

Selenum八种常用定位(案例解析)

Selenium是一个备受推崇的工具。它有着丰富的功能,让我们能够与网页互动,执行各种任务,能为测试工程师和开发人员提供了很大的便利。 要充分利用Selenium,就需要了解如何正确定位网页上的元素。 接下来我将带大家共同探讨Seleni…

google auth2 邮箱登录申请

1.申请地址 https://console.cloud.google.com/apis/credentials?projectlocal-news-390408 选择凭证 创建完成后,添加一个回调地址即可 整个流程 登录google邮箱登录成功会跳转到回调地址,会带code过来根据code 获取token, token 获取邮…

Ubuntu虚拟机部署OpenStack

1、部署环境 系统:ubuntu-22.04.3-desktop-amd64DevStack版本:2024.1VMware Workstation:8G内存、4核处理器、100G硬盘/1、网络NAT模式/1 2、Ubuntu环境设置 点击show applications,选择Software&Updates 跟换Ubuntu的镜像…

flutter 使用FlutterJsonBeanFactory工具遇到的问题

如下图,使用FlutterJsonBeanFactory工具生成的数据类 但是其中 生成的 import package:null/,导致的错误:Target of URI doesn’t exist: ‘package:null/generated/json/asd.g.dart’ 尝试过的方法: 手动添加包名,…

echarts插件-liquidFill(水球图)

echarts插件-liquidFill(水球图) 1.下载2.引入:3.使用 1.下载 echarts.js下载:https://cdnjs.com/libraries/echarts echarts-liquidfill.js下载:https://github.com/ecomfe/echarts-liquidfill 2.引入: …

Django token 认证原理与实战

概述 cookie、session 与token 的区别 Cookie的作用 cookie的存储量很小,一般不超过4Kcookie并不会保存很多信息,一般用来存储登录状态cookie是以键值对进行表示的(keyvalue),例如nameli,表示cookie的名字是name,cookie携带的值是licookie的存储分为会…

WebSocket 入门案例

目录 WebSocket入门案例WebSocket-server新增项目:添加依赖:yml:启动类: frontend-server前端项目:添加依赖:添加yml:启动类:前端引入JS:前端页面:后端代码:测试: WebSocket 入门案…

一句话解释什么是出口IP

出口 IP 是指从本地网络连接到公共互联网时所使用的 IP 地址。这个 IP 地址是由 Internet 服务提供商(ISP)分配给你的,它可以用来标识你的网络流量的来源。如果你使用的是 NAT(网络地址转换)技术,则在 NAT 设备内部会进行地址转换,使得多个设备可以共享同一个公共 IP 地…

在Mac上使用安卓桌面模式

在安装Homeblew的基础上 替换国内源 export HOMEBREW_API_DOMAIN"https://mirrors.tuna.tsinghua.edu.cn/homebrew-bottles/api" export HOMEBREW_BREW_GIT_REMOTE"https://mirrors.tuna.tsinghua.edu.cn/git/homebrew/brew.git" brew update 安装Scrcpy …

DC/DC升压模块电源 高电压稳压输出 12v24v28v48v转600V800V1000V1100V1300V1500V2000V3000V4000V

特点 ● 效率高达 80% ● 2*2 英寸标准封装 ● 单电压输出 ● 价格低 ● 稳压输出 ● 工作温度: -40℃~85℃ ● 阻燃封装,满足UL94-V0 要求 ● 温度特性好 ● 可直接焊在PCB 上 应用 HRA(B) 0.1~30W 系列模块电源是一种DC-DC升压变换器。该模块电源的输入电压分为…

conda虚拟环境配置

命令行输入,conda -V 确定conda版本 创建自己的conda虚拟环境 activate 回车 conda create -n 名字 python版本号 执行命令 确认执行命令 输入y 创建完成 激活环境 conda activate 名字 进入python环境 python 退出 exit() conda deactive

Redis -- 基础知识2

1.Redis客户端介绍 1.基础介绍 Redis是一种客户端-服务器结构的程序,通过网络进行互动 客户端的多种形态 1.自带了命令行客户端:redis-cil 2.图形化界面的客户端:依赖windows系统,连接服务器有诸多限制,不建议使用 3.基…

gRPC之gateway集成swagger

1、gateway集成swagger 1、为了简化实战过程,gRPC-Gateway暴露的服务并未使用https,而是http,但是swagger-ui提供的调用服 务却是https的,因此要在proto文件中指定swagger以http调用服务,指定的时候会用到文件 prot…

CV计算机视觉每日开源代码Paper with code速览-2023.10.23

精华置顶 墙裂推荐!小白如何1个月系统学习CV核心知识:链接 点击CV计算机视觉,关注更多CV干货 论文已打包,点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【目标检测】Zone Evaluation: Revealing Spatial Bias i…