硬件安全与机器学习的结合

文章目录

  • 1. A HT Detection and Diagnosis Method for Gate-level Netlists based on Machine Learning
    • 摘要
    • Introduction
  • 2. 基于多维结构特征的硬件木马检测技术
    • 摘要
    • Instruction
  • 3. A Hardware Trojan Detection and Diagnosis Method for Gate-Level Netlists Based on Different Machine Learning Algorithms
    • 摘要
    • Introduction
  • 4. 基于节点活性的硬件木马检测方法
    • 摘要
  • 5. 用于检测硬件木马延时的线性判别分析算法
    • 摘要

1. A HT Detection and Diagnosis Method for Gate-level Netlists based on Machine Learning

摘要

摘要-集成电路( IC )开发过程中的设计环节存在硬件木马( HT )攻击的风险,已成为硬件安全的"热点"。尽管文献中提出了一些解决方案,但仍然存在时间复杂度高、HT检测精度低和无法定位HT等局限性。
本文提出了一种新颖的基于机器学习( Machine Learning,ML )的HT检测和诊断方法,以识别在设计阶段被恶意插入到IC门级网表中的与HT相关的门/网。我们将电路划分为n个扇区,并从每个扇区的网表中提取5个HT相关的特征,以构建该扇区的五维向量。然后,利用支持向量机( support vector machine,SVM )对这n个五维特征向量进行训练,得到学习到的模型。

Introduction

本文主要针对设计时植入门级网表中的HT进行研究。根据有效阶段,这些解决方案大致可以分为两类:测试时间检测和设计时间检测。
1 )测试时间检测:这些方法利用ML来训练从IC中获得的侧信道参数,以指示IC是否感染HT [ 8 ],[ 9 ],[ 10 ],[ 11 ],[ 12 ]。然而,该技术仅对大型木马有效,且木马检测的性能依赖于特征和ML算法的选择,耗时较长。对于在设计阶段通过恶意修改电气设计文件而插入的HT,这些方法可能无法检测。
2 )设计时间检测:这些方法应用ML学习IC的结构或功能特征来识别HT相关的门/网,例如fan _ ins和fan _ outs的数量[ 13 ],[ 14 ],[ 15 ]。尽管对报告HT感染的IC有很好的效果,并且不需要测试向量,但它们无法定位HT电路插入的位置。此外,HT检测的准确性和HT相关特征的提取可能并不完善,还需要改进。

在本文中,我们提出了一种新的基于支持向量机( SVM )的HT检测和诊断方法,以识别在门级网表中恶意插入的与HT相关的门/网,并报告它们的可能位置,而不使用侧信道参数。我们首先将给定电路的门级网表划分为n个扇区。然后,我们从每个扇区的网表中提取了五个HT相关的特征,并利用它们来构建扇区的五维向量。然后,用SVM分类器对这n个五维特征向量进行训练提取训练好的模式.

本文的贡献总结如下:
1 )我们应用扇区划分技术将给定电路的门级网表划分为n个扇区。
2 )提出了5个HT相关的扇区特征,并从每个扇区的网表中提取这些特征,构建了一个HT特征数据集。
3 )提出了一种基于SVM的方法,对HT特征数据集进行训练和测试,实现对HT的检测和诊断。据我们所知,这是第一个利用ML在门级网表上同时检测和诊断HT的方法。
4 )在ISCAS ’ 85基准电路上的实验表明,与现有方法相比,本文方法可以获得更高的准确率、TPR、Precision和F-测量,并根据检测结果报告HTs可能的植入位置。

2. 基于多维结构特征的硬件木马检测技术

摘要

硬件木马是第三方知识产权(IP)核的主要安全威胁,现有的安全性分析方法提取的特征过于单一,导致 特征分布不够均衡,极易出现较高的误识别率。
该文提出了基于有向图的门级网表抽象化建模算法,建立了门级 网表的有向图模型,简化了电路分析流程;分析了硬件木马共性特征,基于有向图建立了涵盖扇入单元数、扇入 触发器数、扇出触发器数、输入拓扑深度、输出拓扑深度、多路选择器和反相器数量等多维度硬件木马结构特征;提出了基于最近邻不平衡数据分类(SMOTEENN)算法的硬件木马特征扩展算法,有效解决了样本特征集较 少的问题,利用支持向量机建立硬件木马检测模型并识别出硬件木马的特征。

Instruction

本文构建了扇入单元数、扇入触发器数、 扇出触发器数、输入拓扑深度、输出拓扑深度、选 择器数量和反相器数量的硬件木马特征。另外,本 文建立了基于图结构的电路分析模型,将门级网表 映射为有向图模型,最终形成了网表简化分析流 程。最后,提出广度优先搜索算法计算网表顶点的 硬件木马特征值得分,利用基于最近邻不平衡数据 分类算法(Synthetic Minority Oversampling Technique and Edited Nearest Neighbor, SMOTEENN)的硬件木马特征扩展算法来解决木 马特征数据集不平衡问题,借助支持向量机(Support Vector Machines, SVM)算法建立硬件木马检 测模型并检测出IP核中的硬件木马。

3. A Hardware Trojan Detection and Diagnosis Method for Gate-Level Netlists Based on Different Machine Learning Algorithms

摘要

现代集成电路的设计复杂性和外包趋势增加了对手在开发过程中植入硬件木马的机会。有效抵御这种基于硬件的安全威胁,文献中报道了许多解决方案,包括动态和静态技术。然而,仍然缺乏能够同时检测和诊断高精度、低时间复杂度HT电路的方法。因此,为了克服这些限制,本文提出了一种基于不同机器学习算法的门级网表HT检测和诊断方法。给定一个GLN,所提出的方法首先将其划分为几个电路锥,并从每个锥中提取七个HT相关特征。然后,我们对sampleGLN重复这个过程,为下一步构建数据集。然后,我们使用K-最近邻(KNN)、决策树(DT)和朴素贝叶斯(NB)对目标GLN的所有电路锥进行分类。最后,我们通过标签确定每个电路锥是否被HT植入,完成对目标GLN的HT检测和诊断。我们已经将我们的方法应用于ISCAS’85和ISCAS’89基准套件中的11个GLN。

Introduction

由于HT电路的活动将对目标IC产生额外的影响(例如,电路功能、侧通道参数),一些研究人员试图利用这些额外的影响来确定给定的IC是否被HT感染。
此类方法通常会应用测试向量来模拟或运行特洛伊木马电路,以获得几个动态IC特性,因此我们称之为动态检测。
选定的IC特征扫描可以很容易地被植入的HTs检测到,而且这种影响也很容易检测到。因此,动态方法可以实现非常高的HT检测精度。
特别地,逻辑测试(LT)和侧信道分析(SCA)是两种典型的动态HT检测方法。然而,现有的方法有几个局限性。
在本文中,我们重点研究了恶意篡改门级网表(GLN)所创建的木马。在这方面研究HT检测的研究工作通常旨在利用从给定IC的GLN中提取的结构和/或功能特征(例如,栅极或导线的数量)来识别不需要的电路。由于不需要测试载体和黄金IC,它们是静态防御策略。

4. 基于节点活性的硬件木马检测方法

摘要

本文提出了一种基于节点活性的硬件木马检测方法,针对电路中的低活性节点生成测试向量,结合多参数 旁路检测方法,实现对硬件木马的检测。
在这里插入图片描述

5. 用于检测硬件木马延时的线性判别分析算法

摘要

针对芯片生产链长、安全性差、可靠性低,导致硬件木马防不胜防的问题,该文提出一种针对旁路信号 分析的木马检测方法。首先采集不同电压下电路的延时信号,通过线性判别分析(LDA)分类算法找出延时差异, 若延时与干净电路相同,则判定为干净电路,否则判定有木马。然后联合多项式回归算法对木马延时特征进行拟 合,基于回归函数建立木马特征库,最终实现硬件木马的准确识别。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171050.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一文了解GC垃圾回收

一文了解GC垃圾回收 1 判断一个对象为垃圾对象的方法 引用计数法(弃用) 可达性分析算法 是否有指向GC root 的引用链,如果有,不是垃圾对象 ---->GC roo:即rt.jar包中内容 2 内存泄漏与内存溢出区别 泄漏:原本需要被回收的对象&#…

前端koa搭建服务器(保姆级教程)——part1

目录 koa简介前端项目搭建koa环境第一步:新建项目第二步:环境初始化,安装依赖初始化项目,生成package.json文件安装koa依赖安装koa-router 路由管理依赖安装dotenv 环境变量依赖安装nodemon 热启动依赖 第三步:代码调用…

2016年亚太杯APMCM数学建模大赛C题影视评价与定制求解全过程文档及程序

2016年亚太杯APMCM数学建模大赛 C题 影视评价与定制 原题再现 中华人民共和国成立以来,特别是政治改革和经济开放后,随着国家经济的增长、科技的发展和人民生活水平的提高,中国广播电视媒体取得了显著的成就,并得到了迅速的发展…

JVM虚拟机:对象在内存中的存储布局

本文重点 在前面的过程中,我们学习了对象创建过程,那么一个对象在内存中的布局是什么样的呢? 对象在内存中的存储布局 普通对象 当我们创建一个对象的时候,它由三部分组成,分别为对象头(MarkWord+class指针(指向class对象)),实例数据(对象的成员变量),填充。如果…

特殊类设计[下] --- 单例模式

文章目录 5.只能创建一个对象的类5.1设计模式[2.5 万字详解:23 种设计模式](https://zhuanlan.zhihu.com/p/433152245)5.2单例模式1.饿汉模式1.懒汉模式 6.饿汉模式7.懒汉模式7.1饿汉模式优缺点:7.2懒汉模式1.线程安全问题2.单例对象的析构问题 8.整体代码9.C11后可…

react-组件间的通讯

一、父传子 父组件在使用子组件时&#xff0c;提供要传递的数据子组件通过props接收数据 class Parent extends React.Component {render() {return (<div><div>我是父组件</div><Child name"张" age{16} /></div>)} }const Child …

【洛谷 P3654】First Step (ファーストステップ) 题解(模拟+循环枚举)

First Step (ファーストステップ) 题目背景 知らないことばかりなにもかもが&#xff08;どうしたらいいの&#xff1f;&#xff09; 一切的一切 尽是充满了未知数&#xff08;该如何是好&#xff09; それでも期待で足が軽いよ&#xff08;ジャンプだ&#xff01;&#xff09…

华为---DHCP中继代理简介及示例配置

DHCP中继代理简介 IP动态获取过程中&#xff0c;客户端&#xff08;DHCP Client&#xff09;总是以广播&#xff08;广播帧及广播IP报文&#xff09;方式来发送DHCPDISCOVER和DHCPREQUEST消息的。如果服务器&#xff08;DHCP Server&#xff09;和 客户端不在同一个二层网络(二…

人工智能:CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的知识梳理

卷积神经网络&#xff08;CNN&#xff09; 卷积神经网络&#xff08;CNN&#xff09;&#xff0c;也被称为ConvNets或Convolutional Neural Networks&#xff0c;是一种深度学习神经网络架构&#xff0c;主要用于处理和分析具有网格状结构的数据&#xff0c;特别是图像和视频数…

VSCode 开发 Vue 语法提示

一. 打开应用商店&#xff0c;搜索 vetur &#xff0c;选择第一个&#xff0c;点击安装。 二. 安装完成后&#xff0c;还可以下载 Vue Language Features 解决代码警告的问题。 最后重启 VSCode 就可以使用啦。另外输入 按回车键还可以自动生成 vue 代码格式哦。 原创作者&…

原生mysql与mybatis执行update语句的差异

在做一个解除绑定的接口中&#xff0c;发现了这个一个问题&#xff1a; 连续对接口进行测试&#xff0c;发现一直fan返回解除成功&#xff0c;但是逻辑上应该是解除之后&#xff0c;在解除它后就应该回显已解除绑定才对 就一直找原因&#xff0c;sql中使用的是mybatis的…

【Qt之QtConcurrent】描述及使用

描述 QtConcurrent是一个Qt库中的模块&#xff0c;用于实现多线程并发编程。它提供了一些高级API&#xff0c;使得在多核处理器上并行执行代码变得更加容易。 示例&#xff1a; 使用的话&#xff0c; 需要在pro文件中添加&#xff1a;QT concurrent模块。 #include <QC…

基于机器视觉的车道线检测 计算机竞赛

文章目录 1 前言2 先上成果3 车道线4 问题抽象(建立模型)5 帧掩码(Frame Mask)6 车道检测的图像预处理7 图像阈值化8 霍夫线变换9 实现车道检测9.1 帧掩码创建9.2 图像预处理9.2.1 图像阈值化9.2.2 霍夫线变换 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分…

Virtual DOM

目录 Virtual DOM 前言 用法 代码 理解 Virtual DOM的工作原理&#xff1a; 为什么使用Virtual DOM? 哪些库/框架使用Virtual DOM? 总结 Virtual DOM&#xff08;虚拟DOM&#xff09;是一种编程概念&#xff0c;它是对真实DOM的轻量级抽象表示。在前端开发中&#x…

RHCE8 资料整理(四)

RHCE8 资料整理 第四篇 存储管理第13章 硬盘管理13.1 对磁盘进行分区13.2 交换分区&#xff08;swap分区&#xff09; 第14章 文件系统14.1 了解文件系统14.2 了解硬链接14.3 创建文件系统14.4 挂载文件系统14.5 设置永久挂载14.6 查找文件14.7 find的用法 第15章 逻辑卷管理15…

Go基础——数组、切片、集合

目录 1、数组2、切片3、集合4、范围&#xff08;range&#xff09; 1、数组 数组是具有相同唯一类型的一组已编号且长度固定的数据项序列&#xff0c;这种类型可以是任意的原始类型例如整型、字符串或者自定义类型。 Go 语言数组声明需要指定元素类型及元素个数&#xff0c;与…

基于图像识别的跌倒检测算法 计算机竞赛

前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于图像识别的跌倒检测算法 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/…

GO语言代码示例

首先&#xff0c;我们需要安装 rod 库&#xff0c;这是一个用于构建网络爬虫的 Go 语言库。 使用 go get 命令安装 rod 库&#xff1a;go get -u github.com/gofiber/rod 创建一个新的 Go 程序文件&#xff0c;例如&#xff1a;main.go 在 main.go 文件中&#xff0c;导入 r…

c++系列之vector类模拟实现

&#x1f497; &#x1f497; 博客:小怡同学 &#x1f497; &#x1f497; 个人简介:编程小萌新 &#x1f497; &#x1f497; 如果博客对大家有用的话&#xff0c;请点赞关注再收藏 &#x1f31e; 构造函数 vector() //_begin表示有效成员的开始 //_finish表示有效成员的大小…

配置Sentinel 控制台

1.遇到的问题 服务网关 | RuoYi 最近调试若依的微服务版本需要用到Sentinel这个组件&#xff0c;若依内部继承了这个组件连上即用。 Sentinel是阿里巴巴开源的限流器熔断器&#xff0c;并且带有可视化操作界面。 在日常开发中&#xff0c;限流功能时常被使用&#xff0c;用…