竞赛 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的人体跌倒检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1.前言

人体跌倒是人们日常生活中常见姿态之一,且跌倒的发生具有随机、难以预测的特点;其次,跌倒会给人体造成不同程度的伤害,很多人跌倒后由于得不到及时的救助而加重受到的伤害,甚至出现残疾或者死亡的情况;同时随着人口老龄化问题的日渐加剧,跌倒已经成为了我国65周岁以上老人受伤致死的主要原因。因此,跌倒事件严重影响着人们的身体健康,跌倒检测具有十分重要的研究意义。

2.实现效果

跌倒效果

在这里插入图片描述

站立、蹲坐效果

在这里插入图片描述

在这里插入图片描述

3.相关技术原理

3.1卷积神经网络

简介

CNN 是目前机器用来识别物体的图像处理器。CNN
已成为当今自动驾驶汽车、石油勘探和聚变能研究领域的眼睛。在医学成像方面,它们可以帮助更快速发现疾病并挽救生命。得益于 CNN 和递归神经网络
(RNN),各种 AI 驱动型机器都具备了像我们眼睛一样的能力。经过在深度神经网络领域数十年的发展以及在处理海量数据的 GPU
高性能计算方面的长足进步,大部分 AI 应用都已成为可能。

原理

人工神经网络是一个硬件和/或软件系统,模仿神经元在人类大脑中的运转方式。卷积神经网络 (CNN)
通常会在多个全连接或池化的卷积层中应用多层感知器(对视觉输入内容进行分类的算法)的变体。

CNN
的学习方式与人类相同。人类出生时并不知道猫或鸟长什么样。随着我们长大成熟,我们学到了某些形状和颜色对应某些元素,而这些元素共同构成了一种元素。学习了爪子和喙的样子后,我们就能更好地区分猫和鸟。

神经网络的工作原理基本也是这样。通过处理标记图像的训练集,机器能够学习识别元素,即图像中对象的特征。

CNN
是颇受欢迎的深度学习算法类型之一。卷积是将滤波器应用于输入内容的简单过程,会带来以数值形式表示的激活。通过对图像反复应用同一滤波器,会生成名为特征图的激活图。这表示检测到的特征的位置和强度。

卷积是一种线性运算,需要将一组权重与输入相乘,以生成称为滤波器的二维权重数组。如果调整滤波器以检测输入中的特定特征类型,则在整个输入图像中重复使用该滤波器可以发现图像中任意位置的特征。

在这里插入图片描述

关键代码

基于tensorflow的代码实现

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data_bak/', one_hot=True)sess = tf.InteractiveSession()# 截断的正太分布噪声,标准差设为0.1def weight_variable(shape):initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)# 卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数# tf.nn.conv2d是TensorFlow中的2维卷积函数,参数中x是输入,W是卷积的参数,比如[5, 5, 1, 32]# 前面两个数字代表卷积核的尺寸,第三个数字代表有多少个channel,因为我们只有灰度单色,所以是1,如果是彩色的RGB图片,这里是3# 最后代表核的数量,也就是这个卷积层会提取多少类的特征# Strides代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点!Padding代表边界的处理方式,这里的SAME代表给# 边界加上Padding让卷积的输出和输入保持同样SAME的尺寸def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')# tf.nn.max_pool是TensorFlow中的最大池化函数,我们这里使用2*2的最大池化,即将2*2的像素块降为1*1的像素# 最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体上缩小图片尺寸,因此池化层# strides也设为横竖两个方向以2为步长。如果步长还是1,那么我们会得到一个尺寸不变的图片def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')# 因为卷积神经网络会利用到空间结构信息,因此需要将1D的输入向量转为2D的图片结构,即从1*784的形式转为原始的28*28的结构
# 同时因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])# 定义我的第一个卷积层,我们先使用前面写好的函数进行参数初始化,包括weights和bias,这里的[5, 5, 1, 32]代表卷积
# 核尺寸为5*5,1个颜色通道,32个不同的卷积核,然后使用conv2d函数进行卷积操作,并加上偏置项,接着再使用ReLU激活函数进行
# 非线性处理,最后,使用最大池化函数max_pool_2*2对卷积的输出结果进行池化操作
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)# 第二层和第一个一样,但是卷积核变成了64
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)# 因为前面经历了两次步长为2*2的最大池化,所以边长已经只有1/4了,图片尺寸由28*28变成了7*7
# 而第二个卷积层的卷积核数量为64,其输出的tensor尺寸即为7*7*64
# 我们使用tf.reshape函数对第二个卷积层的输出tensor进行变形,将其转成1D的向量
# 然后连接一个全连接层,隐含节点为1024,并使用ReLU激活函数
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)# 防止过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)# 接 Softmax分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

3.1YOLOV5简介

基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

3.2 YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络[22](path-aggregation network, PANet)和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

4.数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

3.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

3.2 数据保存

点击save,保存txt。

在这里插入图片描述

5.模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述

训练

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171243.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

番外8.2 --- 后续

### 01:dd命令:在新挂载点创建swap文件大小10MB;(dd if/dev/zero of/swap bs1024 count10240) 02:给swap建立文件系统,将其分属到swap文件(mkswap /swap; swapon /swap &…

21.2 Python 使用Scapy实现端口探测

Scapy 是一款使用纯Python编写的跨平台网络数据包操控工具,它能够处理和嗅探各种网络数据包。能够很容易的创建,发送,捕获,分析和操作网络数据包,包括TCP,UDP,ICMP等协议,此外它还提…

ExcelPatternTool 开箱即用的Excel工具包现已发布!

文章目录 ExcelPatternTool功能特点:快速开始使用说明常规类型高级类型Importable注解Exportable注解IImportOption导入选项IExportOption导出选项单元格样式StyleMapping样式映射使用数据库作为数据源 示例Sample1:不同类型字段导出Sample2:…

Macos视频增强修复工具:Topaz Video AI for mac

Topaz Video AI是一款使用人工智能技术对视频进行增强和修复的软件。它可以自动降噪、去除锐化、减少压缩失真、提高清晰度等等。Topaz Video AI可以处理各种类型的视频,包括低分辨率视频、老旧影片、手机录制的视频等等。 使用Topaz Video AI非常简单,…

【Linux】部署单机OA项目及搭建spa前后端分离项目

目录 部署OA项目 ​编辑 搭建spa前后端分离项目 后端 前端 配置坏境变量 部署OA项目 在虚拟机中,将项目打包成war文件放置到tomcat根目录下的webapps文件目录下 再在主机数据库中连接数据库,并定义数据库名导入相关的表 继续进入tomcat目录下双击点…

【REDIS】redis-命令大全

【REDIS】redis-命令大全 redis-命令的官方文档 键命令 序号命令及描述1DEL key 该命令用于在 key 存在时删除 key。2DUMP key 序列化给定 key ,并返回被序列化的值。3EXISTS key 检查给定 key 是否存在。4EXPIRE key seconds 为给定 key 设置过期时间&#xf…

升级 Xcode 15模拟器 iOS 17.0 Simulator(21A328) 下载失败

升级 IDE Xcode 15 后本地模拟器 Simulator 全被清空,反复重新尝试 Get 下载频频因网络异常断开而导致失败 ... 注:通过 Get 方式下载一定要保证当前网络环境足够平稳,网络环境不好的情况下该方法几乎成不了 解决办法 Get 方式行不通可以尝试通过 官网 途径先下载 模拟器安装包…

p5.js 到底怎么设置背景图?

本文简介 点赞 关注 收藏 学会了 在 《p5.js 光速入门》 里我们学过加载图片元素,学过过背景色的用法,但当时没提到背景图要怎么使用。 本文就把背景图这部分内容补充完整,并且会提到在 p5.js 里使用背景图的一些注意点。 背景图的用法…

JDK JVM JRE和Java API的关系

Java SE 英文全称是Java Standared Edition,它是Java的标准版。 Java SE由四部分组成:JDK JVM JRE和Java语言。 1.JDK Java Development Kit Java开发工具包。包含了所有编译,运行Java程序所需要的工具,还包含了Java运行环境&a…

npm改变npm缓存路径和改变环境变量

在安装nodejs时,系统会自动安装在系统盘C, 时间久了经常会遇到C盘爆满,有时候出现红色,此时才发现很多时候是因为npm 缓存保存在C盘导致的,下面就介绍下如何改变npm缓存路径。 1、首先找到安装nodejs的路径&#xff0c…

Linux MMC子系统 - 2.eMMC 5.1总线协议浅析

By: Ailson Jack Date: 2023.10.27 个人博客:http://www.only2fire.com/ 本文在我博客的地址是:http://www.only2fire.com/archives/161.html,排版更好,便于学习,也可以去我博客逛逛,兴许有你想要的内容呢。…

C++项目——云备份-⑥-服务端热点管理模块的设计与实现

文章目录 专栏导读1.热点管理类设计2.热点管理类的实现与整理 专栏导读 🌸作者简介:花想云 ,在读本科生一枚,C/C领域新星创作者,新星计划导师,阿里云专家博主,CSDN内容合伙人…致力于 C/C、Linu…

如何系列 如何玩转远程调用之OpenFegin+SpringBoot(非Cloud)

文章目录 简介原生Fegin示例基础契约日志重试编码器/解码器自定义解码器 请求拦截器响应拦截器表单文件上传支持错误解码器断路器指标metrics客户端 配合SpringBoot(阶段一)配合SpringBoot(阶段二)1.EnableLakerFeignClients2.Lak…

vscode不显示横滚动条处理

最近发现vscode打开本地文件不显示水平的滚动条,但是打开一个临时文件是有水平滚动条的。 解决方案 可以一个个试 vscode配置 左下角设置–设置–搜索Scrollbar: Horizontal auto 自动visible 一直展示hidden 一直隐藏 拖动底部状态栏 发现是有的,但是…

UML中类之间的六种主要关系

UML中类之间的六种主要关系: 继承(泛化)(Inheritance、Generalization), 实现(Realization),关联(Association),聚合(Aggregation),组…

【软考】系统集成项目管理工程师(九)项目成本管理【4分】

一、成本概念 1、产品全生命周期成本 产品或系统的整个使用生命周期内,在获得阶段(设计、生产、安装和测试等活动,即项目存续期间)、运营与维护、生命周期结束时对产品的处置所发生的全部成本 2、成本类型 成本类型描述可变成…

lossBN

still tips for learning classification and regression关于softmax的引入和作用分类问题损失函数 - MSE & Cross-entropy⭐Batch Normalization(BN)⭐想法:直接改error surface的landscape,把山铲平feature normalization那…

古剑奇谭木语人氪金最强阵容,土豪配置

古剑奇谭木语人是一款3D回合制RPG手游,以其精湛的古风画质、跌宕起伏的剧情和丰富多样的玩法而闻名。游戏中拥有许多强大的角色,每个角色都拥有独特的技能和机制。为了发挥出最大的实力,我们需要将角色搭配成一支强大的阵容。以下是当前版本中…

网络安全保险行业面临的挑战与变革

保险业内大多数资产类别的数据可以追溯到几个世纪以前;然而,网络安全保险业仍处于初级阶段。由于勒索软件攻击、高度复杂的黑客和昂贵的数据泄漏事件不断增加,许多网络安全保险提供商开始感到害怕继续承保更多业务。 保险行业 根据最近的路…

并发编程- 线程池ForkJoinPool工作原理分析(实践)

数据结构加油站: Comparison Sorting Visualization 并发设计模式 单线程归并排序 public class MergeSort {private final int[] arrayToSort; //要排序的数组private final int threshold; //拆分的阈值,低于此阈值就不再进行拆分public MergeSort…