《动手学深度学习 Pytorch版》 10.4 Bahdanau注意力

10.4.1 模型

Bahdanau 等人提出了一个没有严格单向对齐限制的可微注意力模型。在预测词元时,如果不是所有输入词元都相关,模型将仅对齐(或参与)输入序列中与当前预测相关的部分。这是通过将上下文变量视为注意力集中的输出来实现的。

新的基于注意力的模型与 9.7 节中的模型相同,只不过 9.7 节中的上下文变量 c \boldsymbol{c} c 在任何解码时间步 t ′ \boldsymbol{t'} t 都会被 c t ′ \boldsymbol{c}_{t'} ct 替换。假设输入序列中有 T \boldsymbol{T} T 个词元,解码时间步 t ′ \boldsymbol{t'} t 的上下文变量是注意力集中的输出:

c t ′ = ∑ t = 1 T α ( s t ′ − 1 , h t ) h t \boldsymbol{c}_{t'}=\sum^T_{t=1}{\alpha{(\boldsymbol{s}_{t'-1},\boldsymbol{h}_t)\boldsymbol{h}_t}} ct=t=1Tα(st1,ht)ht

参数字典:

  • 遵循与 9.7 节中的相同符号表达

  • 时间步 t ′ − 1 \boldsymbol{t'-1} t1 时的解码器隐状态 s t ′ − 1 \boldsymbol{s}_{t'-1} st1 是查询

  • 编码器隐状态 h t \boldsymbol{h}_t ht 既是键,也是值

  • 注意力权重 α \alpha α 是使用上节所定义的加性注意力打分函数计算的

在这里插入图片描述

从图中可以看到,加入注意力机制后:

  • 将编码器对每次词的输出作为 key 和 value

  • 将解码器对上一个词的输出作为 querry

  • 将注意力的输出和下一个词的词嵌入合并作为解码器输入

import torch
from torch import nn
from d2l import torch as d2l

10.4.2 定义注意力解码器

AttentionDecoder 类定义了带有注意力机制解码器的基本接口

#@save
class AttentionDecoder(d2l.Decoder):"""带有注意力机制解码器的基本接口"""def __init__(self, **kwargs):super(AttentionDecoder, self).__init__(**kwargs)@propertydef attention_weights(self):raise NotImplementedError

在 Seq2SeqAttentionDecoder 类中实现带有 Bahdanau 注意力的循环神经网络解码器。初始化解码器的状态,需要下面的输入:

  • 编码器在所有时间步的最终层隐状态,将作为注意力的键和值;

  • 上一时间步的编码器全层隐状态,将作为初始化解码器的隐状态;

  • 编码器有效长度(排除在注意力池中填充词元)。

class Seq2SeqAttentionDecoder(AttentionDecoder):def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,dropout=0, **kwargs):super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)self.embedding = nn.Embedding(vocab_size, embed_size)self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers,dropout=dropout)self.dense = nn.Linear(num_hiddens, vocab_size)def init_state(self, enc_outputs, enc_valid_lens, *args):  # 新增 enc_valid_lens 表示有效长度# outputs的形状为(batch_size,num_steps,num_hiddens).# hidden_state的形状为(num_layers,batch_size,num_hiddens)outputs, hidden_state = enc_outputsreturn (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)def forward(self, X, state):# enc_outputs的形状为(batch_size,num_steps,num_hiddens).# hidden_state的形状为(num_layers,batch_size,num_hiddens)enc_outputs, hidden_state, enc_valid_lens = state# 输出X的形状为(num_steps,batch_size,embed_size)X = self.embedding(X).permute(1, 0, 2)outputs, self._attention_weights = [], []for x in X:# query的形状为(batch_size,1,num_hiddens)query = torch.unsqueeze(hidden_state[-1], dim=1)  # 解码器最终隐藏层的上一个输出添加querry个数的维度后作为querry# context的形状为(batch_size,1,num_hiddens)context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)  # 编码器的输出作为key和value# 在特征维度上连结x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)  # 并起来当解码器输入# 将x变形为(1,batch_size,embed_size+num_hiddens)out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)outputs.append(out)self._attention_weights.append(self.attention.attention_weights)  # 存一下注意力权重# 全连接层变换后,outputs的形状为 (num_steps,batch_size,vocab_size)outputs = self.dense(torch.cat(outputs, dim=0))return outputs.permute(1, 0, 2), [enc_outputs, hidden_state,enc_valid_lens]@propertydef attention_weights(self):return self._attention_weights
encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16,num_layers=2)
encoder.eval()
decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8, num_hiddens=16,num_layers=2)
decoder.eval()
X = torch.zeros((4, 7), dtype=torch.long)  # (batch_size,num_steps)
state = decoder.init_state(encoder(X), None)
output, state = decoder(X, state)
output.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape
(torch.Size([4, 7, 10]), 3, torch.Size([4, 7, 16]), 2, torch.Size([4, 16]))

10.4.3 训练

embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 250, d2l.try_gpu()train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqAttentionDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
loss 0.020, 7252.9 tokens/sec on cuda:0

在这里插入图片描述

engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):translation, dec_attention_weight_seq = d2l.predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device, True)print(f'{eng} => {translation}, ',f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
go . => va !,  bleu 1.000
i lost . => j'ai perdu .,  bleu 1.000
he's calm . => il est mouillé .,  bleu 0.658
i'm home . => je suis chez moi .,  bleu 1.000

训练结束后,下面通过可视化注意力权重会发现,每个查询都会在键值对上分配不同的权重,这说明在每个解码步中,输入序列的不同部分被选择性地聚集在注意力池中。

attention_weights = torch.cat([step[0][0][0] for step in dec_attention_weight_seq], 0).reshape((1, 1, -1, num_steps))# 加上一个包含序列结束词元
d2l.show_heatmaps(attention_weights[:, :, :, :len(engs[-1].split()) + 1].cpu(),xlabel='Key positions', ylabel='Query positions')


在这里插入图片描述

练习

(1)在实验中用LSTM替换GRU。

class Seq2SeqEncoder_LSTM(d2l.Encoder):def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,dropout=0, **kwargs):super(Seq2SeqEncoder_LSTM, self).__init__(**kwargs)self.embedding = nn.Embedding(vocab_size, embed_size)self.lstm = nn.LSTM(embed_size, num_hiddens, num_layers,  # 更换为 LSTMdropout=dropout)def forward(self, X, *args):X = self.embedding(X)X = X.permute(1, 0, 2)output, state = self.lstm(X)return output, stateclass Seq2SeqAttentionDecoder_LSTM(AttentionDecoder):def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,dropout=0, **kwargs):super(Seq2SeqAttentionDecoder_LSTM, self).__init__(**kwargs)self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)self.embedding = nn.Embedding(vocab_size, embed_size)self.rnn = nn.LSTM(embed_size + num_hiddens, num_hiddens, num_layers,dropout=dropout)self.dense = nn.Linear(num_hiddens, vocab_size)def init_state(self, enc_outputs, enc_valid_lens, *args):outputs, hidden_state = enc_outputsreturn (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)def forward(self, X, state):enc_outputs, hidden_state, enc_valid_lens = stateX = self.embedding(X).permute(1, 0, 2)outputs, self._attention_weights = [], []for x in X:query = torch.unsqueeze(hidden_state[-1][0], dim=1)  # 解码器最终隐藏层的上一个输出添加querry个数的维度后作为querrycontext = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)outputs.append(out)self._attention_weights.append(self.attention.attention_weights)outputs = self.dense(torch.cat(outputs, dim=0))return outputs.permute(1, 0, 2), [enc_outputs, hidden_state,enc_valid_lens]@propertydef attention_weights(self):return self._attention_weights
embed_size_LSTM, num_hiddens_LSTM, num_layers_LSTM, dropout_LSTM = 32, 32, 2, 0.1
batch_size_LSTM, num_steps_LSTM = 64, 10
lr_LSTM, num_epochs_LSTM, device_LSTM = 0.005, 250, d2l.try_gpu()train_iter_LSTM, src_vocab_LSTM, tgt_vocab_LSTM = d2l.load_data_nmt(batch_size_LSTM, num_steps_LSTM)
encoder_LSTM = Seq2SeqEncoder_LSTM(len(src_vocab_LSTM), embed_size_LSTM, num_hiddens_LSTM, num_layers_LSTM, dropout_LSTM)
decoder_LSTM = Seq2SeqAttentionDecoder_LSTM(len(tgt_vocab_LSTM), embed_size_LSTM, num_hiddens_LSTM, num_layers_LSTM, dropout_LSTM)
net_LSTM = d2l.EncoderDecoder(encoder_LSTM, decoder_LSTM)
d2l.train_seq2seq(net_LSTM, train_iter_LSTM, lr_LSTM, num_epochs_LSTM, tgt_vocab_LSTM, device_LSTM)
loss 0.021, 7280.8 tokens/sec on cuda:0

在这里插入图片描述

engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):translation, dec_attention_weight_seq_LSTM = d2l.predict_seq2seq(net_LSTM, eng, src_vocab_LSTM, tgt_vocab_LSTM, num_steps_LSTM, device_LSTM, True)print(f'{eng} => {translation}, ',f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
go . => va !,  bleu 1.000
i lost . => j'ai perdu .,  bleu 1.000
he's calm . => puis-je <unk> <unk> .,  bleu 0.000
i'm home . => je suis chez moi .,  bleu 1.000
attention_weights_LSTM = torch.cat([step[0][0][0] for step in dec_attention_weight_seq_LSTM], 0).reshape((1, 1, -1, num_steps_LSTM))# 加上一个包含序列结束词元
d2l.show_heatmaps(attention_weights_LSTM[:, :, :, :len(engs[-1].split()) + 1].cpu(),xlabel='Key positions', ylabel='Query positions')


在这里插入图片描述


(2)修改实验以将加性注意力打分函数替换为缩放点积注意力,它如何影响训练效率?

class Seq2SeqAttentionDecoder_Dot(AttentionDecoder):def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,dropout=0, **kwargs):super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)self.attention = d2l.DotProductAttention(  # 替换为缩放点积注意力num_hiddens, num_hiddens, num_hiddens, dropout)self.embedding = nn.Embedding(vocab_size, embed_size)self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers,dropout=dropout)self.dense = nn.Linear(num_hiddens, vocab_size)def init_state(self, enc_outputs, enc_valid_lens, *args):outputs, hidden_state = enc_outputsreturn (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)def forward(self, X, state):enc_outputs, hidden_state, enc_valid_lens = stateX = self.embedding(X).permute(1, 0, 2)outputs, self._attention_weights = [], []for x in X:query = torch.unsqueeze(hidden_state[-1], dim=1)context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)outputs.append(out)self._attention_weights.append(self.attention.attention_weights)outputs = self.dense(torch.cat(outputs, dim=0))return outputs.permute(1, 0, 2), [enc_outputs, hidden_state,enc_valid_lens]@propertydef attention_weights(self):return self._attention_weights
embed_size_Dot, num_hiddens_Dot, num_layers_Dot, dropout_Dot = 32, 32, 2, 0.1
batch_size_Dot, num_steps_Dot = 64, 10
lr_Dot, num_epochs_Dot, device_Dot = 0.005, 250, d2l.try_gpu()train_iter_Dot, src_vocab_Dot, tgt_vocab_Dot = d2l.load_data_nmt(batch_size_Dot, num_steps_Dot)
encoder_Dot = Seq2SeqEncoder_LSTM(len(src_vocab_Dot), embed_size_LSTM, num_hiddens_Dot, num_layers_Dot, dropout_Dot)
decoder_Dot = Seq2SeqAttentionDecoder_LSTM(len(tgt_vocab_Dot), embed_size_Dot, num_hiddens_Dot, num_layers_Dot, dropout_Dot)
net_Dot = d2l.EncoderDecoder(encoder_Dot, decoder_Dot)
d2l.train_seq2seq(net_Dot, train_iter_Dot, lr_Dot, num_epochs_Dot, tgt_vocab_Dot, device_Dot)
loss 0.021, 7038.8 tokens/sec on cuda:0

在这里插入图片描述

engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):translation, dec_attention_weight_seq_Dot = d2l.predict_seq2seq(net_Dot, eng, src_vocab_Dot, tgt_vocab_Dot, num_steps_Dot, device_Dot, True)print(f'{eng} => {translation}, ',f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
go . => va !,  bleu 1.000
i lost . => j'ai perdu .,  bleu 1.000
he's calm . => il est riche .,  bleu 0.658
i'm home . => je suis chez moi .,  bleu 1.000
attention_weights_Dot = torch.cat([step[0][0][0] for step in dec_attention_weight_seq_Dot], 0).reshape((1, 1, -1, num_steps_Dot))# 加上一个包含序列结束词元
d2l.show_heatmaps(attention_weights_Dot[:, :, :, :len(engs[-1].split()) + 1].cpu(),xlabel='Key positions', ylabel='Query positions')


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/172036.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PS软件 点击 “另存为 Web 所用格式” ,提示错误 无法完成操作 系统找不到指定路径

软件&#xff1a;Adobe Photoshop 问题&#xff1a; PS 点击 另存为 Web 所用格式 &#xff0c;提示错误 无法完成操作 系统找不到指定路径 解决&#xff1a; 如果是Win10以上的系统&#xff0c;出现这种情况基本就是被系统自带的杀毒软件阻止了&#xff0c;可以看一下电脑右…

JavaScript从入门到精通系列第二十五篇:JavaScript中的Date对象

文章目录 一&#xff1a;Date对象简介 1&#xff1a;概念简介 二&#xff1a;Date对象 1&#xff1a;创建当前时间 2&#xff1a;创建指定时间 三&#xff1a;日期对象函数 1&#xff1a;getDate() 2&#xff1a;getDay() 3&#xff1a;getMonth() 4&#xff1a;getF…

vue源码分析(二)——vue的入口发生了什么

文章目录 前言&#xff08;1&#xff09;vue 项目构建的时候&#xff0c;通过package.json文件看到构建入口&#xff08;2&#xff09; 构建入口页面&#xff1a;导入同级模块config的getAllbuilds方法&#xff08;3&#xff09; 通过传入参数中的builds对象使用map获取&#x…

主流大语言模型的技术细节

主流大语言模型的技术原理细节从预训练到微调https://mp.weixin.qq.com/s/P1enjLqH-UWNy7uaIviWRA 比较 LLaMA、ChatGLM、Falcon 等大语言模型的细节&#xff1a;tokenizer、位置编码、Layer Normalization、激活函数等。2. 大语言模型的分布式训练技术&#xff1a;数据并行、…

threejs(4)-纹理材质高级操作

一、纹理重复_缩放_旋转_位移操作 // 导入threejs import * as THREE from "three"; // 导入轨道控制器 import { OrbitControls } from "three/examples/jsm/controls/OrbitControls.js"; // 导入lil.gui import { GUI } from "three/examples/jsm/l…

创建并启动华为HarmonyOS本地与远程模拟器及远程真机

1.打开设备管理器 2.选择要添加的手机设备,然后点击安装 3.正在下载华为手机模拟器 4.下载完成 5.创建新模拟器 下载系统镜像 点击下一步,创建模拟器 创建成功 启动模拟器 华为模拟器启动成功 6.登陆华为账号并使用远程模拟器 7.使用远程真机

使用Selenium和Java编写爬虫程序

以下是一个使用Selenium和Java编写的音频爬虫程序&#xff0c;该程序使用了proxy的代码。请注意&#xff0c;这个示例需要在IDE中运行&#xff0c;并且可能需要根据您的系统和需求进行调整。 import java.io.IOException; import java.util.List; import java.util.concurrent…

提升技能,挑战自我——一站式在线题库小程序

在这个信息爆炸的时代&#xff0c;我们总是在寻找一种方式&#xff0c;让自己在众多的知识海洋中快速提升技能&#xff0c;挑战自我。今天&#xff0c;我要向大家推荐一款全新的在线题库小程序KD蝌蚪阿坤&#xff0c;它将帮助你实现这个目标。 KD蝌蚪阿坤是一款全面的在线题库…

革新技术,释放创意 :Luminar NeoforMac/win超强AI图像编辑器

Luminar Neo&#xff0c;一个全新的AI图像编辑器&#xff0c;正以其强大的功能和独特的创意引领着图像编辑的潮流。借助于最新的AI技术&#xff0c;Luminar Neo为用户提供了无限可能的图像编辑体验&#xff0c;让每一个想法都能被精彩地实现。 Luminar Neo的AI引擎强大而高效&…

Vue3:将表格数据下载为excel文件

需求 将表格数据或者其他形式的数据下载为excel文件 技术栈 Vue3、ElementPlus、 实现 1、安装相关的库 下载xlsx 和 file-saver 库 npm install -S file-saver npm install -S xlsx引入XLSX库和FileSaver库 import XLSX from xlsx; import FileSaver from file-saver;…

论文阅读——ELECTRA

论文下载&#xff1a;https://openreview.net/pdf?idr1xMH1BtvB 另一篇分析文章&#xff1a;ELECTRA 详解 - 知乎 一、概述 对BERT的token mask 做了改进。结合了GAN生成对抗模型的思路&#xff0c;但是和GAN不同。 不是对选择的token直接用mask替代&#xff0c;而是替换为…

电商接口api数据比价接口推荐

当前&#xff0c;受诸多因素的影响&#xff0c;经济下行&#xff0c;在日趋激烈的市场竞争中&#xff0c;很多企业也都面临着越来越大的生存压力&#xff0c;企业的盈利空间也逐渐被压缩。因此&#xff0c;越来越多的企业在控制成本方面更下功夫&#xff0c;这也就对企业采购提…

学习笔记---更进一步的双向链表专题~~

目录 1. 双向链表的结构&#x1f98a; 2. 实现双向链表&#x1f41d; 2.1 要实现的目标&#x1f3af; 2.2 创建初始化&#x1f98b; 2.2.1 List.h 2.2.2 List.c 2.2.3 test.c 2.2.4 代码测试运行 2.3 尾插打印头插&#x1fabc; 思路分析 2.3.1 List.h 2.3.2 List.…

Spark UI中Shuffle dataSize 和shuffle bytes written 指标区别

背景 本文基于Spark 3.1.1 目前在做一些知识回顾的时候&#xff0c;发现了一些很有意思的事情&#xff0c;就是Spark UI中ShuffleExchangeExec 的dataSize和shuffle bytes written指标是不一样的&#xff0c; 那么在AQE阶段的时候&#xff0c;是以哪个指标来作为每个Task分区大…

Redis实现消息队列

使用Redis中的list实现消息队列 list是Redis的一种数据结构&#xff0c;可以把它理解成双向链表 可以从头部插入数据然后从尾部取出数据&#xff0c;从而实现消息队列的效果 利用命令 LPUSH和RPOP &#xff08;从左边插入数据从右边取出数据&#xff09; lpush l1 e1 e2rpo…

【1.2】神经网络:神经元与激活函数

✅作者简介&#xff1a;大家好&#xff0c;我是 Meteors., 向往着更加简洁高效的代码写法与编程方式&#xff0c;持续分享Java技术内容。 &#x1f34e;个人主页&#xff1a;Meteors.的博客 &#x1f49e;当前专栏&#xff1a; 神经网络&#xff08;随缘更新&#xff09; ✨特色…

@TableField(fill = FieldFill.INSERT)这个注解的作用

TableField 是 MyBatis-Plus提供的一个注解&#xff0c;用于标注实体类的属性与数据库表的字段之间的映射关系。当你在一个实体类的属性上使用 TableField(fill FieldFill.INSERT) 注解时&#xff0c;你告诉 MyBatis-Plus 在插入记录时自动填充这个字段。 FieldFill.INSERT 是一…

Lvs +keepalivede : 高可用集群

keepalived为Ivs应运而生的高可用服务。Ivs的调度器无法做高可用&#xff0c;于是keepalived这个软件。 实现的是调度器的高可用。 但是: keepalived不是专为Ivs集群服务的&#xff0c;也可以做其他代理服务器的高可用。 lvs的高可用集群&#xff1a;主调度器和备调度器&…

轻松合并多个TXT文本,实现一键文件整理!

亲爱的读者们&#xff0c;您是否曾经需要将多个TXT文本文件合并成一个文件&#xff0c;却苦于无从下手&#xff1f;现在&#xff0c;我们向您介绍一个全新的TXT文本合并工具&#xff0c;让您轻松实现一键文件整理&#xff01; 首先&#xff0c;在首助编辑高手的主页面板块栏里…

通过Vue自带服务器实现Ajax请求跨域(vue-cli)

通过Vue自带服务器实现Ajax请求跨域&#xff08;vue-cli&#xff09; 跨域 原理&#xff1a;从A页面访问到B页面&#xff0c;并且要获取到B页面上的数据&#xff0c;而两个页面所在的端口、协议和域名中哪怕有一个不对等&#xff0c;那么这种行为就叫跨域。注意&#xff1a;类…