Spring Boot整合DeepSeek实现AI对话(API调用和本地部署)

本篇文章会分基于DeepSeek开放平台上的API,以及本地私有化部署DeepSeek R1模型两种方式来整合使用。
本地化私有部署可以参考这篇博文 全面认识了解DeepSeek+利用ollama在本地部署、使用和体验deepseek-r1大模型

Spring版本选择

根据Spring官网的描述
Spring AI是一个人工智能工程的应用框架,旨在为Java开发者提供一种更简洁的方式与AI交互,减轻在Java业务中接入LLM模型应用的学习成本。目前,Spring AI已经上架到Spring Initializr,开发者可以在https://start.spring.io/上使用并构建相关应用‌。

SpringAI支持接入多种AI服务,如OpenAI、Ollama、Azure OpenAI、Huggingface等,可以实现聊天、embedding、图片生成、语音转文字、向量数据库、function calling、prompt模板、outputparser、RAG等功能‌。

spring ai框架支持Spring Boot版本为 3.2.x and 3.3.x
在这里插入图片描述
从SpringBoot 3.x 开始依赖的JDK版本最低是JDK17,所以这里演示整合的代码都是基于spring boot 3.3.8 以及 JDK17

整合DeepSeek API key

深度求索deepseek开放平台申请自己的API key,新用户注册后会赠送10元余额,有效期为一个月。
在这里插入图片描述

创建一个 API key

保存好自己的API KEY 千万别泄露喽
在这里插入图片描述
创建API key后我们可以开始构建SpringBoot工程了,基于springboot 3.4.2版本搭建一个工程。
spring-ai-openai starter:伪装成 OpenAI,DeepSeek 提供了 OpenAI 兼容模式。
,引入以下依赖:

自动引入依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.4.2</version><relativePath/> <!-- lookup parent from repository --></parent><groupId>com.example</groupId><artifactId>demo-deepseek</artifactId><version>0.0.1-SNAPSHOT</version><name>demo-deepseek</name><description>demo-deepseek</description><url/><licenses><license/></licenses><developers><developer/></developers><scm><connection/><developerConnection/><tag/><url/></scm><properties><java.version>17</java.version><spring-ai.version>1.0.0-M5</spring-ai.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-openai-spring-boot-starter</artifactId></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency></dependencies><dependencyManagement><dependencies><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-bom</artifactId><version>${spring-ai.version}</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><configuration><annotationProcessorPaths><path><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></path></annotationProcessorPaths></configuration></plugin><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><configuration><excludes><exclude><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></exclude></excludes></configuration></plugin></plugins></build></project>

代码

添加了 spring-ai-openai-spring-boot-starter 依赖;Spring AI 为 OpenAI Chat Client 提供了 Spring Boot 自动装配。

OpenAiAutoConfiguration配置类中自动注入了,我们只需要直接注入调用即可。

DeepSeek 其实提供了 OpenAI 兼容模式,只要在请求头里加个api_key,就能假装自己在调 OpenAI。Spring AI 的 openai starter 本质上是通过 RestTemplate 发请求,我们只需要改改 URL 和认证方式。
在这里插入图片描述


@RestController
public class ChatController {@Resourceprivate OpenAiChatModel chatModel;private final List<Message> chatHistoryList = new ArrayList<>();@PostConstructpublic void init() {chatHistoryList.add(new SystemMessage("You are a helpful assistant."));}@GetMapping("/chat")public ChatResponse test(String message) {chatHistoryList.add(new UserMessage(message));Prompt prompt = new Prompt(chatHistoryList);ChatResponse chatResponse = chatModel.call(prompt);if (chatResponse.getResult() != null && chatResponse.getResult().getOutput() != null) {chatHistoryList.add(chatResponse.getResult().getOutput());}return chatResponse;}}

修改配置文件

spring:ai:openai:base-url: https://api.deepseek.com/v1  # DeepSeek的OpenAI式端点api-key: sk-your-deepseek-key-herechat.options:model: deepseek-chat  # 指定DeepSeek的模型名称

调用接口测试
在这里插入图片描述

本地部署调用

如果想要把 DeepSeek 部署在内网服务器,或者你想在本地跑个小模型,可以采用这种方式来在本地部署一个 DeepSeek R1 蒸馏版。

spring-ai-ollama-spring-boot-starter:通过 Ollama 本地部署一个 DeepSeek R1 蒸馏版。

下载并安装

从官方网站下载并安装 Ollama:https://ollama.com

Ollama 可以让你轻松在自己的电脑上运行各种强大的 AI 模型,就像运行普通软件一样简单。

ollama pull deepseek-r1:8b
ollama list deepseek

更多版本可以在这里查看:https://ollama.com/library/deepseek-r1
在这里插入图片描述

修改pom,添加依赖

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId><version>0.8.1</version>
</dependency>

修改配置文件

spring:ai:ollama:base-url: http://localhost:11434chat:model: deepseek-r1:8b  # 与本地模型名称对应

实现代码

@RestController
@RequestMapping("/ai")
public class ChatController {private final ChatClient chatClient;// 构造方法注入 ChatClient.Builder,用于构建 ChatClient 实例public ChatController(ChatClient.Builder chatClient) {this.chatClient = chatClient.build();}@GetMapping("/chat")public ResponseEntity<Flux<String>> chat(@RequestParam(value = "message") String message) {try {// 调用 ChatClient 生成响应,并以 Flux<String>(响应流)形式返回Flux<String> response = chatClient.prompt(message).stream().content();return ResponseEntity.ok(response);} catch (Exception e) {return ResponseEntity.badRequest().build();}}
}

api-key不需要了但是也不能不填,不填会启动报错,模型就配置本地有的模型即可
如果想像网站那样可以一个字一个字的输出,也可以调用chatModel.stream流式输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/17275.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

硬件电路(10)-二极管

一、概述 二极管是用半导体材料(硅、硒、锗等)制成的一种电子器件。它具有单向导电性能&#xff0c; 即给二极管阳极和阴极加上正向电压时&#xff0c;二极管导通。 当给阳极和阴极加上反向电压时&#xff0c;二极管截止。 因此&#xff0c;二极管的导通和截止&#xff0c;则相…

智慧农业-虫害及生长预测

有害生物防控系统是一个综合性的管理体系&#xff0c;旨在预防和控制对人类生活、生产甚至生存产生危害的生物。这些生物可能包括昆虫、动物、植物、微生物乃至病毒等。 一、系统构成 1、监测预警系统&#xff1a;利用智能传感器、无人机、遥感技术等手段&#xff0c;实时监测…

在 PyCharm 中接入deepseek的API的各种方法

在 PyCharm 中接入 DeepSeek 的 API&#xff0c;通常需要以下步骤&#xff1a; 1. 获取 DeepSeek API 密钥 首先&#xff0c;确保你已经在 DeepSeek 平台上注册并获取了 API 密钥&#xff08;API Key&#xff09;。如果没有&#xff0c;请访问 DeepSeek 的官方网站注册并申请 …

DeepSeek 助力 Vue 开发:打造丝滑的返回顶部按钮(Back to Top)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…

Github自定义readme文件 个人主页简介 模版

自己写的 样式 # &#x1f44b; Hi bro , Im Dduo ! Glad to meet you &#x1f601;&#x1f60d;&#x1f61c;- &#x1f4da; Im Dduo, a student. Feel free to reach out if youd like to chat or collaborate! &#x1f60a; - &#x1f4ac; Dont hesitate to reach …

【工业安全】-CVE-2022-35561- Tenda W6路由器 栈溢出漏洞

文章目录 1.漏洞描述 2.环境搭建 3.漏洞复现 4.漏洞分析 4.1&#xff1a;代码分析 4.2&#xff1a;流量分析 5.poc代码&#xff1a; 1.漏洞描述 漏洞编号&#xff1a;CVE-2022-35561 漏洞名称&#xff1a;Tenda W6 栈溢出漏洞 威胁等级&#xff1a;高危 漏洞详情&#xff1…

CondaValueError: Malformed version string ‘~‘: invalid character(s)

CondaValueError: Malformed version string ‘~‘: invalid character(s) 送一张 GPT plus 、 deepseek-R1 满血 体验卡&#xff5e; https://bbs.csdn.net/topics/619568415 ​ 报错原因 使用conda安装一些库时出现以下报错&#xff1a; CondaValueError: Malformed versio…

渗透利器:YAKIT 工具-基础实战教程.

YAKIT 工具-基础实战教程. YAKIT&#xff08;Yak Integrated Toolkit&#xff09;是一款基于Yak语言开发的集成化网络安全单兵工具&#xff0c;旨在覆盖渗透测试全流程&#xff0c;提供从信息收集、漏洞扫描到攻击实施的自动化支持。其核心目标是通过GUI界面降低Yak语言的使用…

【Git版本控制器】:第一弹——Git初识,Git安装,创建本地仓库,初始化本地仓库,配置config用户名,邮箱信息

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;Linux网络编程 &#x1f337;追光的人&#xff0c;终会万丈光芒 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 ​ 相关笔记&#xff1a; https://blog.csdn.net/dj…

数据结构(6)

注意&#xff1a;只有前序和中序或者后序和中序才能还原二叉树。 1.创建一个二叉树 2.遍历一个二叉树&#xff08;前序遍历&#xff0c;后序和中序遍历与此类似&#xff09; 3.寻找二叉树的节点个数和层数 4.销毁二叉树 5.层序遍历

LabVIEW用户界面设计原则

在LabVIEW开发中&#xff0c;用户界面&#xff08;UI&#xff09;设计不仅仅是为了美观&#xff0c;它直接关系到用户的操作效率和体验。一个直观、简洁、易于使用的界面能够大大提升软件的可用性&#xff0c;尤其是在复杂的实验或工业应用中。设计良好的UI能够减少操作错误&am…

大语言模型入门

大语言模型入门 1 大语言模型步骤1.1 pre-training 预训练1.1.1 从网上爬数据1.1.2 tokenization1.1.2.1 tokenization using byte pair encoding 1.3 预训练1.3.1 context1.3.2 training1.3.3 输出 1.2 post-training1.2.1 token 1.2 SFT监督微调1.3 人类反馈强化学习1.3.1 人…

Windows 11 下 Ollama 安装与 OpenWebUI 调用 DeepSeek-R1 的详细指南

文章目录 Windows 11 下 Ollama 安装与 OpenWebUI 调用 DeepSeek-R1 的详细指南一、Ollama 的安装与配置1. 下载 Ollama2. 安装 Ollama3. 验证 Ollama 安装 二、部署 DeepSeek-R1 模型1. 拉取 DeepSeek-R1 模型2. 启动 DeepSeek-R1 模型 三、OpenWebUI 的安装与配置1. 安装 Pyt…

JVM ②-双亲委派模型 || 垃圾回收GC

这里是Themberfue 在上节课对内存区域划分以及类加载的过程有了简单的了解后&#xff0c;我们再了解其他两个较为重要的机制&#xff0c;这些都是面试中常考的知识点&#xff0c;有必要的话建议背出来&#xff0c;当然不是死记硬背&#xff0c;而是要有理解的背~~~如果对 JVM …

君海游戏岗位,需要私我

游戏岗位内推啦&#xff0c;需要找我哈 共14个职位 广告投放主管 社会招聘全国 广告投放 社会招聘全国 设计主管 社会招聘全国 海外投放 社会招聘广东省广州市 海外运营 社会招聘广东省广州市 产品运营专员 社会招聘广东省广州市 平台运营 社会招聘广东…

制药行业 BI 可视化数据分析方案

一、行业背景 随着医药行业数字化转型的深入&#xff0c;企业积累了海量的数据&#xff0c;包括销售数据、生产数据、研发数据、市场数据等。如何利用这些数据&#xff0c;挖掘其价值&#xff0c;为企业决策提供支持&#xff0c;成为医药企业面临的重大挑战。在当今竞争激烈的…

【BUUCTF逆向题】[WUSTCTF2020]level3(魔改base64)

一.[WUSTCTF2020]level3 打开IDA反汇编&#xff0c;发现就是base64加密 这里rand就是与&搭配设置奇偶数2分随机 但是根据提示不是标准base64加密 首先想到魔改密码表&#xff0c;追踪进去&#xff0c;发现没有什么变化啊 尝试对Base64字符串解码也不对 追踪密码表CtrlX发…

文字转语音(三)FreeTTS实现

项目中有相关的功能&#xff0c;就简单研究了一下。 说明 FreeTTS 是一个基于 Java 的开源文本转语音&#xff08;TTS&#xff09;引擎&#xff0c;旨在将文字内容转换为自然语音输出。 FreeTTS 适合对 英文语音质量要求低、预算有限且需要离线运行 的场景&#xff0c;但若需…

【Prometheus】prometheus结合cAdvisor监控docker容器运行状态,并且实现实时告警通知

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…

HTML应用指南:利用GET请求获取全国海底捞门店位置信息

随着新零售业态的快速发展&#xff0c;门店位置信息的获取变得越来越重要。作为餐饮服务行业的先锋&#xff0c;海底捞不仅在服务质量上持续领先&#xff0c;还积极构建广泛的门店网络&#xff0c;以支持其不断增长的用户群体。为了更好地理解和利用这些数据&#xff0c;本篇文…