Python散点图(Scatter Plot):数据探索的“第一张图表”

在数据可视化领域,散点图是一种强大而灵活的工具,它能够帮助我们直观地理解和探索数据集中变量之间的关系。本文将深入探讨散点图的核心原理、应用场景以及如何使用Python进行高效绘制。

后续几篇将介绍高级技巧、复杂应用场景。
Python散点图(Scatter Plot):高阶分析、散点图矩阵、三维散点图及综合应用
Python散点图多变量数据可视化:金融、市场、医学等应用的深度解析
Python散点密度图:数据可视化的强大工具

一、散点图的核心原理

散点图通过在二维坐标系中绘制数据点来展示两个变量之间的关系。每个点代表一个观测值,其横纵坐标分别对应两个变量的取值。通过观察这些点的分布模式,我们可以得出变量之间是否存在相关性、是否存在异常值以及数据的分布形态等重要信息。
散点图通过在笛卡尔坐标系中绘制点集,展示两个变量的数值关系。每个点的位置由变量值决定,常用于发现变量间的相关性(正相关、负相关或无关联)、是否存在异常值、数据分布模式(如线性、非线性、离群值)。

关键要素

  1. 坐标轴映射:横轴和纵轴分别对应两个不同的变量,数据点的位置由这两个变量的值决定。
  2. 数据点样式:可以通过颜色、大小和形状等属性对数据点进行编码,以表示额外的变量信息。
  3. 趋势线拟合:回归线、注释文本、置信区间等增强分析深度(如seaborn.regplot自动添加回归线)。

二、散点图的应用场景

1. 数据分析与探索

  • 相关性分析:验证假设(如广告投入与销售额的关系)。
  • 聚类识别:发现数据中的自然分组(如用户分群)。
  • 异常值检测:定位偏离主要分布的异常点(如金融欺诈检测)。
  • 分析数据分布:散点图可以揭示数据的分布形态,例如是否呈现对称分布、偏态分布等。这对于后续的数据分析和建模具有重要意义,因为不同的分布形态可能需要采用不同的统计方法和模型。

2. 科研与可视化

  • 生物学:分析基因表达量与疾病风险的关系。
  • 气象学:研究温度与降水量的分布模式。
  • 社会科学:探索收入水平与教育程度的相关性。

3. 机器学习

  • 特征工程:观察特征与目标变量的关系(如房价预测中的面积与价格)。
  • 分类边界可视化:展示分类算法在高维空间的决策边界。

三、使用Python绘制散点图

基础散点图

import matplotlib.pyplot as plt
import numpy as np# 生成数据
np.random.seed(0)
x = np.random.rand(50)
y = np.random.rand(50)# 绘制散点图
plt.figure(figsize=(8, 6))
plt.scatter(x, y, color='blue', alpha=0.7)
plt.title('基础散点图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.grid(True, linestyle='--', alpha=0.7)
plt.show()

带回归线的散点图

import seaborn as sns
from scipy import stats# 使用seaborn加载示例数据集
tips = sns.load_dataset("tips")# 绘制带回归线的散点图
sns.lmplot(x="total_bill", y="tip", data=tips, height=6, aspect=1.5)
plt.title('带回归线的散点图')
plt.show()

分组散点图

# 生成分组数据
categories =</

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/37908.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker利用ollama +Open WebGUI在本地搭建部署一套Deepseek-r1模型

系统&#xff1a;没有限制&#xff0c;可以运行docker就行 磁盘空间&#xff1a;至少预留50GB; 内存&#xff1a;8GB docker版本&#xff1a;4.38.0 桌面版 下载ollama镜像 由于docker镜像地址&#xff0c;网络不太稳定&#xff0c;建议科学上网的一台服务器拉取ollama镜像&am…

JavaScript |(六)DOM事件 | 尚硅谷JavaScript基础实战

学习来源&#xff1a;尚硅谷JavaScript基础&实战丨JS入门到精通全套完整版 笔记来源&#xff1a;在这位大佬的基础上添加了一些东西&#xff0c;欢迎大家支持原创&#xff0c;大佬太棒了&#xff1a;JavaScript |&#xff08;六&#xff09;DOM事件 | 尚硅谷JavaScript基础…

卷积神经网络 - 梯度和反向传播算法

在卷积网络中&#xff0c;参数为卷积核中权重以及偏置。和全连接前馈网络类似&#xff0c;卷积网络也可以通过误差反向传播算法来进行参数学习。本文我们从数学角度&#xff0c;来学习卷积神经网络梯度的推导和其反向传播算法的原理。 一、梯度&#xff1a;损失函数 L 关于第 …

鸿蒙NEXT项目实战-百得知识库03

代码仓地址&#xff0c;大家记得点个star IbestKnowTeach: 百得知识库基于鸿蒙NEXT稳定版实现的一款企业级开发项目案例。 本案例涉及到多个鸿蒙相关技术知识点&#xff1a; 1、布局 2、配置文件 3、组件的封装和使用 4、路由的使用 5、请求响应拦截器的封装 6、位置服务 7、三…

【测试篇】关于allpairs实现正交测试用例保姆级讲解,以及常见的错误问题

前言 &#x1f31f;&#x1f31f;本期讲解关于测试工具相关知识介绍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话不多说…

OpenCV图像拼接(4)图像拼接模块的一个匹配器类cv::detail::BestOf2NearestRangeMatcher

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::detail::BestOf2NearestRangeMatcher 是 OpenCV 库中用于图像拼接模块的一个匹配器类&#xff0c;专门用于寻找两幅图像之间的最佳特征点匹配…

C++: AVL树(实现旋转操作)

前言 map/set容器有个共同点是&#xff1a;其底层都是按照二叉搜索树来实现的&#xff0c;但是二叉搜索树有其自身的缺陷&#xff0c;假如往树中插入的元素有序或者接近有序&#xff0c;二叉搜索树就会退化成单支树&#xff0c;时间复杂度会退化成O(N)&#xff0c;因此map、set…

OpenCV中距离公式

一、各类距离公式总结 常见距离公式 欧氏距离&#xff1a; 曼哈顿距离&#xff08;L1&#xff09;‌&#xff1a; 切比雪夫距离&#xff08;Chessboard&#xff09;‌&#xff1a; 1、点与点距离(欧氏距离) ‌二维空间‌ 设两点坐标为 P1(x1,y1)、P2(x2,y2)&#xff0c;其距离…

六十天前端强化训练之第二十四天之Vue 模板语法与 v-for 指令大师级详解

欢迎来到编程星辰海的博客讲解 看完可以给一个免费的三连吗&#xff0c;谢谢大佬&#xff01; 目录 一、模板语法与指令知识精讲 1.1 模板语法三大核心 1.2 常见指令全家福 1.3 v-for 深度解析 二、商品列表示例完整实现 2.1 完整可运行代码 2.2 代码解析 2.3 运行效果…

XSS跨站脚本攻击漏洞(Cross Site Scripting)

前提概要 本文章主要用于分享XSS跨站脚本攻击漏洞基础学习&#xff0c;以下是对XSS跨站脚本攻击漏洞的一些个人解析&#xff0c;请大家结合参考其他文章中的相关信息进行归纳和补充。 XSS跨站脚本攻击漏洞描述 跨站脚本攻击&#xff08;XSS&#xff09;漏洞是一种常见且危害较…

用ArcGIS做一张符合环评要求的植被类型图

植被类型图是环境影响评价&#xff08;环评&#xff09;中的重要图件&#xff0c;需满足数据准确性、制图规范性和信息完整性等要求。本教程将基于ArcMap平台&#xff0c;从数据准备到成果输出&#xff0c;详细讲解如何制作符合环评技术规范的植被类型图。 ArcGIS遥感解译土地…

详解string类+迭代器

迭代器 概念&#xff1a;在 C 中&#xff0c;迭代器是访问容器&#xff08;如数组、列表、向量、字符串等&#xff09;元素的一种方式。迭代器提供了一种统一的接口&#xff0c;使得你可以使用相同的代码来遍历不同类型的容器。迭代器本质上是一个指针或者指针的封装&#xff0…

Sqoop安装部署

Apache Sqoop 简介 Sqoop&#xff08;SQL-to-Hadoop&#xff09;是 Apache 开源项目&#xff0c;主要用于&#xff1a; 将关系型数据库中的数据导入 Hadoop 分布式文件系统&#xff08;HDFS&#xff09;或相关组件&#xff08;如 Hive、HBase&#xff09;。 将 Hadoop 处理后…

软件工程之软件验证计划Software Verification Plan

个人主页&#xff1a;云纳星辰怀自在 座右铭&#xff1a;“所谓坚持&#xff0c;就是觉得还有希望&#xff01;” 本文为基于ISO26262软件验证计划模板&#xff0c;仅供参考。 软件验证计划&#xff0c;包括&#xff1a; 1. 软件需求验证计划 2. 软件架构设计验证计划 3. 软件单…

Windows系统本地部署OpenManus对接Ollama调用本地AI大模型

文章目录 前言1. 环境准备1.1 安装Python1.2. 安装conda 2. 本地部署OpenManus2.1 创建一个新conda环境2.2 克隆存储库2.3 安装依赖环境 3. 安装Ollama4. 安装QwQ 32B模型5. 修改OpenManus配置文件6. 运行OpenManus7.通过网页使用OpenManus8. 安装内网穿透8.1 配置随机公网地址…

计算机网络总结

一、IP地址及子网掩码、MAC 二、DNS、ARP 三、DHCP、UDP、TCP 四、NAT、NAPT、端口、网关 五、路由器与交换机 六、OSI模型 一、IP地址及子网掩码、MAC 1.1 IP地址的作用 用来全局网络通信&#xff08;门牌号&#xff09;用来区分相同网络之间的主机 1.2 子网掩码的作用 …

MySQL0基础学习记录-下载与安装

下载 下载地址&#xff1a; &#xff08;Windows&#xff09;https://dev.mysql.com/downloads/file/?id536787 安装 直接点next&#xff0c;出现&#xff1a; 点execute 然后一直next到这页&#xff1a; next 然后需要给root设置一个密码&#xff1a; 在next。。很多页…

React基础语法速览

一、项目创建 npm create vite 这里选择react即可&#xff0c;如图&#xff1a; 二、基本文件说明 react函数式编程时&#xff0c;用的是JSX语法进行开发的&#xff0c;这里注意&#xff0c;return时只能有一个根标签&#xff1b; 三、React核心语法 1.插值功能 插值可以使用…

IT工具 | node.js 进程管理工具 PM2 大升级!支持 Bun.js

P(rocess)M(anager)2 是一个 node.js 下的进程管理器&#xff0c;内置负载均衡&#xff0c;支持应用自动重启&#xff0c;常用于生产环境运行 node.js 应用&#xff0c;非常好用&#x1f44d; &#x1f33c;概述 2025-03-15日&#xff0c;PM2发布最新版本v6.0.5&#xff0c;这…

teaming技术

一.介绍 在CentOS 6与RHEL 6系统中&#xff0c;双网卡绑定采用的是bonding技术。到了CentOS 7&#xff0c;不仅能继续沿用bonding&#xff0c;还新增了teaming技术。在此推荐使用teaming&#xff0c;因其在查看与监控方面更为便捷 。 二.原理 这里介绍两种最常见的双网卡绑定…