2023年第四届MathorCup大数据竞赛(A题)|坑洼道路检测和识别|数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2021年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。

希望这些想法对大家的做题有一定的启发和借鉴意义。
让我们来看看MathorCup的A题!
在这里插入图片描述

问题重述:

问题1:图像特征提取和模型建立

题目要求建立一个高识别准确度、快速的模型,能够识别道路图像是正常的还是坑洼的。具体步骤包括:

  1. 解压data.zip,准备训练数据。
  2. 对图像进行预处理,如调整尺寸和数据增强。
  3. 使用深度学习模型提取图像特征。
  4. 构建一个分类模型,将特征转化为更容易分类的表示形式。
  5. 使用训练数据训练模型。

问题2:模型评估

题目要求对模型进行评估,从不同维度考察其性能。评估指标可能包括准确率、召回率、精确度、F1分数等,以及绘制ROC曲线和AUC。

问题3:测试集识别
题目求使用已经训练好的模型对未标记的测试数据集(在竞赛结束前48小时公布下载链接)中的图像进行坑洼识别。将识别结果以特定格式填写到test result.csv中,并将该文件提交以供评估。

问题一

问题一的具体建模思路通常基于深度学习方法,在这里我们使用卷积神经网络(CNN)。

  1. 数据准备

    • 将数据集划分为训练集和验证集,以用于模型训练和评估。
  2. 图像预处理

    • 调整图像大小为固定尺寸,如 224 × 224 224\times224 224×224
    • 数据增强:对训练图像进行数据增强,包括旋转、翻转、缩放和亮度调整等。
  3. 特征提取

    • 使用一个预训练的卷积神经网络(如ResNet、VGG、或MobileNet)来提取图像特征。这些模型通常包含卷积层,用于捕获图像的特征。
    • 在模型的前几层,特征图会被提取出来。
  4. 模型构建

    • 添加一个或多个全连接层,用于将提取的特征转换为最终的分类输出。
    • 使用sigmoid激活函数来输出一个0到1的值,表示道路是否坑洼。

模型的建立可以表示为以下公式:

给定一个输入图像 x x x,表示为一个 W × H × C W\times H\times C W×H×C的三维张量,其中 W W W H H H是图像的宽度和高度, C C C是通道数。卷积神经网络(CNN)将图像 x x x映射到一个输出标量 y y y,表示道路是否坑洼的概率。这个映射可以表示为:

y = σ ( f ( x ) ) y = \sigma(f(x)) y=σ(f(x))

其中:

  • f ( x ) f(x) f(x)表示卷积神经网络的前向传播过程,包括卷积、池化和全连接等层的组合,用于提取图像特征。
  • σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1 是sigmoid激活函数,将 z z z映射到0到1的范围内,表示概率。

模型的训练可以使用二元交叉熵(binary cross-entropy)损失函数来度量预测概率与实际标签之间的差异:

L ( y , y ^ ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) \mathcal{L}(y, \hat{y}) = -\left(y\log(\hat{y}) + (1 - y)\log(1 - \hat{y})\right) L(y,y^)=(ylog(y^)+(1y)log(1y^))

其中:

  • y y y 是实际标签(0表示坑洼,1表示正常道路)。
  • y ^ \hat{y} y^ 是模型的预测概率。

训练模型的目标是最小化损失函数 L \mathcal{L} L,以使预测尽可能接近实际标签。

二元交叉熵(Binary Cross-Entropy)是一种用于衡量二分类问题中模型预测与实际标签之间的差异的损失函数。它通常用于训练和评估二分类模型,例如判断一个样本属于两个类别中的哪一个。

这个损失函数的度量原理基于信息论的概念,特别是信息熵。以下是它的度量原理:

假设我们有一个二分类问题,其中样本的实际标签为 y y y,可以取0或1,而模型的预测概率为 y ^ \hat{y} y^,表示样本属于类别1的概率。

交叉熵损失的度量原理基于以下两种情况:

  1. 当实际标签 y = 1 y=1 y=1时,交叉熵损失为:

    − log ⁡ ( y ^ ) -\log(\hat{y}) log(y^)

    这表示模型预测样本属于类别1的概率越高,损失越小,反之则损失越大。这是因为实际标签为1时,我们希望模型的预测也接近1。

  2. 当实际标签 y = 0 y=0 y=0时,交叉熵损失为:

    − log ⁡ ( 1 − y ^ ) -\log(1 - \hat{y}) log(1y^)

    这表示模型预测样本属于类别0的概率越高,损失越小,反之则损失越大。这是因为实际标签为0时,我们希望模型的预测也接近0。

在训练过程中,我们会将所有样本的交叉熵损失加权求和,然后尝试最小化这个总损失。这意味着模型的目标是使其对于所有样本的预测与实际标签更加一致,以最小化总的交叉熵损失。

总的二元交叉熵损失可以表示为:

L ( y ^ , y ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) \mathcal{L}(\hat{y}, y) = -\left(y\log(\hat{y}) + (1 - y)\log(1 - \hat{y})\right) L(y^,y)=(ylog(y^)+(1y)log(1y^))

其中, L ( y ^ , y ) \mathcal{L}(\hat{y}, y) L(y^,y)表示损失, y ^ \hat{y} y^表示模型的预测概率, y y y表示实际标签。最小化这个损失将使模型尽量接近实际标签的分布,以更好地进行二分类任务。

代码:

import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd# 加载和预处理数据
def load_and_preprocess_data():# 你需要编写加载和预处理数据的代码,返回X和y# X是图像数据,y是标签(0表示坑洼,1表示正常道路)# 这里使用一个假设的示例,你需要根据实际数据进行适配X = np.random.rand(301, 224, 224, 3)  # 示例随机生成图像数据y = np.random.randint(2, size=301)  # 示例随机生成标签return {'images': X, 'labels': y}# 构建深度学习模型
def build_model():model = keras.Sequential([keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),keras.layers.MaxPooling2D((2, 2)),keras.layers.Conv2D(64, (3, 3), activation='relu'),keras.layers.MaxPooling2D((2, 2)),keras.layers.Flatten(),keras.layers.Dense(128, activation='relu'),keras.layers.Dense(1, activation='sigmoid')])model.compile(optimizer='adam',loss='binary_crossentropy',  # 二元交叉熵损失metrics=['accuracy'])return model# 模型训练
def train_model(X_train, y_train, X_val, y_val):model = build_model()#见完整版代码

题目二

问题二的建模思路需要分为两个主要部分:模型训练和模型评估。

模型训练

  1. 数据加载与划分:首先,加载问题一中准备好的训练数据。将数据集划分为训练集( X train X_{\text{train}} Xtrain y train y_{\text{train}} ytrain)和验证集( X val X_{\text{val}} Xval y val y_{\text{val}} yval),通常采用交叉验证方法,以确保模型在不同数据子集上进行训练和评估。

  2. 模型选择:选择问题一中构建的深度学习模型,该模型已包含合适的网络结构和损失函数(二元交叉熵),用于道路坑洼的分类任务。

  3. 模型训练:使用训练集进行模型训练。迭代多个周期(epochs),使模型能够适应数据。训练过程中,模型会自动调整权重,以最小化损失函数。

  4. 超参数调优:根据需要,进行超参数调优,包括学习率、批处理大小等。这可以通过验证集上的性能来指导。你可以使用交叉验证技术来尝试不同的超参数组合。

  • 数据加载与划分:

X train , y train , X val , y val = train_test_split ( X , y , test_size = 0.2 , random_state = 42 ) X_{\text{train}}, y_{\text{train}}, X_{\text{val}}, y_{\text{val}}=\text{train\_test\_split}(X, y, \text{test\_size}=0.2,\text{random\_state}=42) Xtrain,ytrain,Xval,yval=train_test_split(X,y,test_size=0.2,random_state=42)

  • 模型选择:
    model = build_model ( ) \text{model} = \text{build\_model}() model=build_model()

  • 模型训练:

    model.fit ( X train , y train , epochs = 10 , validation_data = ( X val , y val ) \text{model.fit}(X_{\text{train}}, y_{\text{train}}, \text{epochs}=10, \text{validation\_data}=(X_{\text{val}}, y_{\text{val}}) model.fit(Xtrain,ytrain,epochs=10,validation_data=(Xval,yval)

模型评估

使用ROC曲线和AUC(Area Under the Curve)来评估模型的性能是一种常见的方法,特别适用于二分类问题。ROC曲线是一种用于可视化分类模型性能的工具,而AUC是ROC曲线下的面积,用于定量评估模型的性能。

1. 计算模型的ROC曲线

在评估模型之前,你需要使用验证集上的真正例率(True Positive Rate,召回率)和假正例率(False Positive Rate)来构建ROC曲线。这可以通过不同的分类阈值来实现。以下是ROC曲线的构建过程:

  • 为了计算ROC曲线,首先使用模型对验证集进行预测,获取每个样本的预测概率。

  • 使用不同的分类阈值(通常是0到1之间的值),将样本分为正类和负类。根据不同阈值,计算真正例率(TPR)和假正例率(FPR)。

  • 绘制TPR和FPR的曲线,即ROC曲线。

2. 计算AUC值

AUC(ROC曲线下的面积)用于量化ROC曲线的性能。AUC的值通常在0.5和1之间,越接近1表示模型性能越好。

  • 计算ROC曲线下的面积(AUC)。通常,你可以使用数值积分方法或库函数来计算AUC的值。

3. 评估模型

根据ROC曲线和AUC值进行模型评估。

  • AUC接近1表示模型具有良好的性能,可以很好地区分正类和负类样本。

  • ROC曲线越接近左上角(0,1),表示模型性能越好。

  • 如果AUC接近0.5,模型性能可能很差,类似于随机猜测。

  • 比较不同模型的AUC值,选择具有较高AUC值的模型。

  • 根据任务需求,可以根据不同的阈值来调整模型,以在召回率和精确度之间取得平衡。

import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt# 加载和预处理数据(与问题一相同)
def load_and_preprocess_data():# 你需要编写加载和预处理数据的代码,返回X和y# X是图像数据,y是标签(0表示坑洼,1表示正常道路)# 这里使用一个假设的示例,你需要根据实际数据进行适配X = np.random.rand(301, 224, 224, 3)  # 示例随机生成图像数据y = np.random.randint(2, size=301)  # 示例随机生成标签return {'images': X, 'labels': y}# 构建深度学习模型(与问题一相同)
def build_model():model = keras.Sequential([# 模型结构,与问题一相同])model.compile(optimizer='adam',loss='binary_crossentropy',  # 二元交叉熵损失metrics=['accuracy'])return model# 模型训练(与问题一相同)
def train_model(X_train, y_train, X_val, y_val):model = build_model()model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val))return model# 计算ROC曲线和AUC
def calculate_roc_auc(model, X_val, y_val):y_pred = model.predict(X_val)fpr, tpr, thresholds = roc_curve(y_val, y_pred)roc_auc = auc(fpr, tpr)return fpr, tpr, roc_auc# 绘制ROC曲线
def plot_roc_curve(fpr, tpr, roc_auc):plt.figure()plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')plt.xlim([0.0, 1.0])plt.ylim([0.0, 1.05])plt.xlabel('False Positive Rate')plt.ylabel('True Positive Rate')plt.title('Receiver Operating Characteristic')#见完整代码

问题三

问题三要求使用已训练的模型对测试集中的坑洼图像进行识别,并将识别结果保存在一个CSV文件中。以下是问题三的具体建模思路,:

模型应用

  1. 加载已训练模型:首先,加载问题一或问题二中训练好的模型。这个模型应该是能够识别道路坑洼的模型。

  2. 加载测试数据:加载问题一中提供的测试数据集(通常以图像的形式)。

  3. 图像预处理:对测试数据进行与训练数据相同的预处理,包括图像归一化、缩放等操作。

  4. 模型预测:使用加载的模型对测试数据进行预测,得到每张图像的分类结果(0表示坑洼,1表示正常道路)。

结果保存

  1. 保存识别结果:将图像文件名与对应的分类结果(0或1)保存在CSV文件中。这个文件将作为问题三的提交文件。

模型应用

  • 加载已训练模型:

model = load_trained_model ( ) \text{model} = \text{load\_trained\_model}() model=load_trained_model()

  • 加载测试数据:

    test_data = load_test_data ( ) \text{test\_data} = \text{load\_test\_data}() test_data=load_test_data()

  • 图像预处理:

    preprocessed_test_data = preprocess_images ( test_data ) \text{preprocessed\_test\_data} = \text{preprocess\_images}(\text{test\_data}) preprocessed_test_data=preprocess_images(test_data)

  • 模型预测:

    predictions = model.predict ( preprocessed_test_data ) \text{predictions} = \text{model.predict}(\text{preprocessed\_test\_data}) predictions=model.predict(preprocessed_test_data)

结果保存

  • 保存识别结果:

    save_results_to_csv ( test_data_file_names , predictions ) \text{save\_results\_to\_csv}(\text{test\_data\_file\_names}, \text{predictions}) save_results_to_csv(test_data_file_names,predictions)

import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras# 加载已训练的模型
def load_trained_model(model_path):model = keras.models.load_model(model_path)return model# 加载测试数据
def load_test_data(test_data_dir):# 你需要编写加载测试数据的代码,返回测试数据集# 这里使用一个假设的示例,你需要根据实际数据进行适配test_data = np.random.rand(1000, 224, 224, 3)  # 示例随机生成测试图像数据return test_data# 图像预处理(与问题二相似)
def preprocess_images(images):# 你需要编写与问题二中相似的图像预处理代码# 包括图像归一化、缩放、通道处理等操作return preprocessed_images# 模型预测
def predict_with_model(model, test_data):predictions = model.predict(test_data)# 假设模型输出概率,可以根据阈值将概率转换为类别(0或1)predicted_labels = (predictions >= 0.5).astype(int)return predicted_labels# 保存识别结果到CSV文件
def save_results_to_csv(file_names, predicted_labels, output_csv_file):results_df = pd.DataFrame({'fnames': file_names, 'label': predicted_labels})results_df.to_csv(output_csv_file, index=False)# 示例用法
if __name__ == '__main__':model_path = 'trained_model.h5'  # 已训练模型的文件路径test_data_dir = 'test_data'  # 测试数据集的目录output_csv_file = 'test_results.csv'  # 结果保存的CSV文件名# 加载已训练的模型trained_model = load_trained_model(model_path)
#见完整版代码

完整代码+思路:
2023年第四届MathorCup大数据竞赛(A题)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173171.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE VaRest 从本地读取写入JSON(蓝图)

写入简单JSON到本地项目目录 写入位置:项目根目录 文件名:writjson.Json 写入内容:{“ke1”:“key1value”,“ke2”:“ke2value”} 从本地项目目录加载json 加载位置:项目根目录 文件名:writjson.Json 加载内容&…

React-快速搭建开发环境

1.安装 说明:react-excise-01是创建的文件名 npx create-react-app react-excise-01 2. 打开文件 说明:we suggest that you begin by typing:下面即是步骤。 cd react-excise-01 npm start 3.显示

python—openpyxl操作excel详解

前言 openpyxl属于第三方模块,在python中用来处理excel文件。 可以对excel进行的操作有:读写、修改、调整样式及插入图片等。 但只能用来处理【 .xlsx】 后缀的excel文件。 使用前需要先安装,安装方法: pip install openpyxl…

RabbitMQ (4)

RabbitMQ (4) 文章目录 1. 死信的概念2. 死信的来源3. 死信代码案例3.1 TTL 过期时间3.2 超过队列最大长度3.3 拒绝消息 前言   上文我们已经学习完 交换机 ,知道了几个交换机的使用 ,下面我们来学习一下 死信队列 1. 死信的概念 先从概念解释上搞清楚这…

Wpf 使用 Prism 实战开发Day01

一.开发环境准备 1. VisualStudio 2022 2. .NET SDK 7.0 3. Prism 版本 8.1.97 以上环境,如有新的版本,可自行选择安装新的版本为主 二.创建Wpf项目 1.项目的名称:MyToDo 项目名称:这里只是记录学习,所以随便命名都无所谓,只要觉得合理就…

数据清洗与规范化详解

数据处理流程,也称数据处理管道,是将原始数据转化为有意义的信息和知识的一系列操作步骤。它包括数据采集、清洗、转换、分析和可视化等环节,旨在提供有用的见解和决策支持。在数据可视化中数据处理是可视化展示前非常重要的一步,…

CN考研真题知识点二轮归纳(1)

本轮开始更新真题中涉及过的知识点,总共不到20年的真题,大致会出5-10期,尽可能详细的讲解并罗列不重复的知识点~ 目录 1.三类IP地址网络号的取值范围 2.Socket的内容 3.邮件系统中向服务器获取邮件所用到的协议 4.RIP 5.DNS 6.CSMA/CD…

python随手小练8(南农作业题)

题目1: 输入3 门课程 a,b,c 的成绩,求 3 门成绩的总和平均值(整数,四舍五人)以及最高和最低值。如果3门课程考试成绩分别以权重 0.50.3 和0.2计人总评成绩(整数先求总和再四舍五入),则最终总评成绩是多少? 具体操作: a float(input("a:")) b float(in…

Element 多个Form表单 同时验证

一、背景 在一个页面中需要实现两个Form表单,并在页面提交时需要对两个Form表单进行校验,两个表单都校验成功时才能提交 所用技术栈:Vue2Element UI 二、实现效果 三、多个表单验证 注意项: 两个form表单,每个表单上…

2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序

2017年亚太杯APMCM数学建模大赛 B题 喷雾轨迹规划问题 原题再现 喷釉工艺用喷釉枪或喷釉机在压缩空气下将釉喷入雾中,使釉附着在泥体上。这是陶瓷生产过程中一个容易实现自动化的过程。由于不均匀的釉料在烧制过程中会产生裂纹,导致工件报废&#xff0…

https下载图片

OpenSSL用法示例 OpenSSL源码安装 对于ubuntu,懒得编译源码可以直接安装 sudo apt-get install libssl–dev /usr/include/openssl/ssl.h CMakeLists中添加 link_libraries(ssl crypto) apt-get安装不需要再制定libssl.a, libcrypto.a的路径了, 就像用libc标…

【算法|动态规划 | 01背包问题No.1】AcWing 426. 开心的金明

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【AcWing算法提高学习专栏】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程&a…

node模块导出引入两种方式和npm包管理

模块化的好处 在 Node.js 中每个文件都被当做是一个独立的模块,模块内定义的变量和函数都是独立作用域的,因为 Node.js 在执行模块代码时,将使用如下所示的函数封装器对其进行封装 (function(exports,require,module,__filename,_dirname){//…

C# | Chaikin算法 —— 计算折线对应的平滑曲线坐标点

Chaikin算法——计算折线对应的平滑曲线坐标点 本文将介绍一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。通过对原始点集合进行切割和插值操作,得到平滑的曲线坐…

CNN 网络结构简介

本文通过整理李宏毅老师的机器学习教程的内容,介绍 CNN(卷积神经网络)的网络结构。 CNN 网络结构, 李宏毅 CNN 主要应用在图像识别(image classification, 图像分类)领域。 通常,输入的图片大小相同&am…

【开源】基于SpringBoot的计算机机房作业管理系统的设计和实现

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 登录注册模块2.2 课程管理模块2.3 课时管理模块2.4 学生作业模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 课程表3.2.2 课时表3.2.3 学生作业表 四、系统展示五、核心代码5.1 查询课程数据5.2 新增课时5.3 提交作…

Jupyter Notebook还有魔术命令?太好使了

在Jupyter Notebooks中,Magic commands(以下简称魔术命令)是一组便捷的功能,旨在解决数据分析中的一些常见问题,可以使用%lsmagic 命令查看所有可用的魔术命令 插播,更多文字总结指南实用工具科技前沿动态…

视频上的水印文字如何去掉?

嘿,大家好!作为一个自媒体从业者,我相信大家都想知道如何去掉视频上的水印文字,想必大家和我一样每天都会在互联网寻找素材,而大部分图片或者视频都带有各种各样的水印,这给我的创作带来了不小的麻烦&#…

Vue 3.3.6 ,得益于WeakMap,比之前更快了

追忆往昔,穿越前朝,CSS也是当年前端三剑客之一,风光的很,随着前端跳跃式的变革,CSS在现代前端开发中似乎有点默默无闻起来。 不得不说当看到UnoCss之前,我甚至都还没听过原子化CSS[1]这个概念(…

[开源]一个低代码引擎,支持在线实时构建低码平台,支持二次开发

一、开源项目简介 TinyEngine低代码引擎使能开发者定制低代码平台,支持在线实时构建低码平台,支持二次开发或集成低码平台能力。 二、开源协议 使用MIT开源协议 三、界面展示 四、功能概述 TinyEngine是一个低代码引擎,基于这个引擎可以构…