高阶数据结构图下篇

目录:

  • 图的基本概念二
    • 深度优先遍历(DFS)
      • 广度优先遍历(BFS)
  • kruskal(克鲁斯卡尔算法)
    • Prim(普里姆算法)
      • Dijkstra(迪杰斯特拉算法)
        • Bellman-ford(贝尔曼-福特算法)
  • flyod-warshall(佛洛伊德算法)

图的基本概念二

完全图:任意两个顶点之间有且仅有一条边,则称此图为无向完全图;任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图。

邻接顶点:在无向图G中,若(U,V)是E(G)中的一条边;则称U和V互为邻接顶点,有向图中,则称顶点U邻接到V。

顶点的度:顶点的度是指与它相关联的边的条数,记作deg(V)。

路径:在图G中,若从顶点vi出发有一组边使其可达到顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。

路径长度:对于不带权的图,一条路径长度是指该路径上的的边的条数;对于带权的图,一条路径的长度是指该路径上各个边权值的总和

简单路径和回路:若路径上各个顶点均不重复,则称这样的路径为简单路径。若路径上第一个顶点和最后一个顶点重合,则称这样的路径为回路或环。

子图:顶点和边都是原图的一部分。

连通图:在无向图中,如果图中任意一对顶点是连通的,则称为连通图

强连通图:在有向图中,若在每一个顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到vi的路径,则称此图为强连通图。

生成树:一个连通图的最小连通子图称作该树的生成树,有n个顶点的连通图的生成树有n个顶点和n-1条边。

深度优先遍历(DFS):深度优先遍历借助栈结构,将可执行的节点元素逐个入栈,直到本条路径再也找不到可执行的节点。

广度优先遍历(BFS):广度优先遍历,又叫宽度优先搜索或横向优先搜索,是从根结点开始沿着树的宽度搜索遍历,将离根节点最近的节点先遍历出来,在继续深挖下去。

最小生成树:构成生成树这些边加起来权值是最小的,最小的成本让这个n个顶点连通。

深度优先遍历(DFS)

深度优先遍历借助栈结构,将可执行的节点元素逐个入栈,直到本条路径再也找不到可执行的节点。
代码如下:
在这里插入图片描述

		//递归void _DFS(size_t srci, vector<bool>& visited){cout << srci << ":" << _vertexs[srci] << endl;visited[srci] = true;//表示这个顶点已经访问过了// 找一个srci相邻的没有访问过的点,去往深度遍历for (size_t i = 0; i < _vertexs.size(); ++i){if (_matrix[srci][i] != MAX_W && visited[i] == false)//表示这个顶点相连且没有访问过{_DFS(i, visited);}}}void DFS(const V& src){size_t srci = GetVertexIndex(src);vector<bool> visited(_vertexs.size(), false);_DFS(srci, visited);}

广度优先遍历(BFS)

广度优先遍历,又叫宽度优先搜索或横向优先搜索,是从根结点开始沿着树的宽度搜索遍历,将离根节点最近的节点先遍历出来,在继续深挖下去。
在这里插入图片描述

代码如下:

void BFS(const V& src){size_t srci = GetVertexIndex(src);// 队列和标记数组queue<int> q;vector<bool> visited(_vertexs.size(), false);q.push(srci);visited[srci] = true;int levelSize = 1;size_t n = _vertexs.size(); while (!q.empty()){// 一层一层出for (int i = 0; i < levelSize; ++i){int front = q.front();//出队头数据q.pop();cout << front << ":" << _vertexs[front] << " ";// 把front顶点的邻接顶点入队列for (size_t i = 0; i < n; ++i){if (_matrix[front][i] != MAX_W)//不是MAX_W就是相连的顶点{if (visited[i] == false){q.push(i);//入队列visited[i] = true;//表示这个顶点访问过了}}}}cout << endl;levelSize = q.size();}cout << endl;}

kruskal(克鲁斯卡尔算法)

Kruskal算法是一种贪心算法,我们将图中的每个edge按照权值大小进行排序,每次从边集中取出权值最小且两个顶点都不在同一个集合的边加入生成树中!注意:如果这两个顶点都在同一集合内,说明已经通过其他边相连,因此如果将这个边添加到生成树中,那么就会形成环!这样反复做,直到所有的节点都连接成功。如何判断添加这条边会不会形成环,我们可以用到并查集。
特点:
1.只能使用图中权值最小的边来构成最小生成树
2.只能使用恰好n-1条边来连接图中的n个顶点
3.选用的n-1条边不能构成回路

代码如下:

		W Kruskal(Self& minTree){size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; ++i){minTree._matrix[i].resize(n, MAX_W);}priority_queue<Edge, vector<Edge>, greater<Edge>> minque;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (i < j && _matrix[i][j] != MAX_W){minque.push(Edge(i, j, _matrix[i][j]));}}}// 选出n-1条边int size = 0;W totalW = W();UnionFindSet ufs(n);while (!minque.empty()){Edge min = minque.top();minque.pop();if (!ufs.InSet(min._srci, min._dsti)){cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti);++size;totalW += min._w;}else{cout << "构成环:";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}}if (size == n - 1){return totalW;}else{return W();}}

在这里插入图片描述

Prim(普里姆算法)

Prim算法是另一种贪心算法,和Kuskral算法的贪心策略不同,Kuskral算法主要对边进行操作,而Prim算法则是对节点进行操作,每次遍历添加一个点,这时候我们就不需要使用并查集了。

代码如下:

W Prim(Self& minTree, const W& src){size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; ++i){minTree._matrix[i].resize(n, MAX_W);}vector<bool> X(n, false);vector<bool> Y(n, true);X[srci] = true;Y[srci] = false;// 从X->Y集合中连接的边里面选出最小的边priority_queue<Edge, vector<Edge>, greater<Edge>> minq;// 先把srci连接的边添加到队列中for (size_t i = 0; i < n; ++i){if (_matrix[srci][i] != MAX_W){minq.push(Edge(srci, i, _matrix[srci][i]));}}cout << "Prim开始选边" << endl;size_t size = 0;W totalW = W();while (!minq.empty()){Edge min = minq.top();minq.pop();// 最小边的目标点也在X集合,则构成环if (X[min._dsti]){//cout << "构成环:";//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}else{minTree._AddEdge(min._srci, min._dsti, min._w);//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;X[min._dsti]= true;Y[min._dsti] = false;++size;totalW += min._w;if (size == n - 1)break;for (size_t i = 0; i < n; ++i){if (_matrix[min._dsti][i] != MAX_W && Y[i]){minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));}}}	}if (size == n - 1){return totalW;}else{return W();}}

总结这两种算法:
构成最小生成树的方法:Kruskal算法和Prim算法。这两个算法都采用了逐步求解的贪心策略。Kruksal算法是对边进行操作,先取出边,然后判断边的两个节点,这样的话,如果一个图结构非常的稠密,那么Kruksal算法就比较慢了,而Prim算法只是对节点进行遍历,并使用visited进行标记,因此会相对于Kruksal算法,在稠密图方面好很多,因此Kruksal算法常用于稀疏图,而Prim算法常用于稠密图!

Dijkstra(迪杰斯特拉算法)

迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题,同时算法要求图中所以边的权重非负。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

代码如下:

void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath){size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();dist.resize(n, MAX_W);pPath.resize(n, -1);dist[srci] = 0;pPath[srci] = srci;// 已经确定最短路径的顶点集合vector<bool> S(n, false);for (size_t j = 0; j < n; ++j){// 选最短路径顶点且不在S更新其他路径int u = 0;W min = MAX_W;for (size_t i = 0; i < n; ++i){if (S[i] == false && dist[i] < min){u = i;min = dist[i];}}S[u] = true;// 松弛更新u连接顶点v  srci->u + u->v <  srci->v  更新for (size_t v = 0; v < n; ++v){if (S[v] == false && _matrix[u][v] != MAX_W&& dist[u] + _matrix[u][v] < dist[v]){dist[v] = dist[u] + _matrix[u][v];pPath[v] = u;}}}}
Bellman-ford(贝尔曼-福特算法)

美国应用数学家Richard Bellman (理查德.贝尔曼)于1958 年发表了该算法。此外Lester Ford在1956年也发表了该算法。因此这个算法叫做Bellman-Ford算法。其实EdwardF. Moore在1957年也发表了同样的算法,所以这个算法也称为Bellman-Ford-Moore算法。Bellman-ford 算法比dijkstra算法更具普遍性,因为它对边没有要求,可以处理负权边与负权回路的问题。缺点是时间复杂度过高,高达O(VE), V为顶点数,E为边数。

代码如下:

bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath){size_t n = _vertexs.size();size_t srci = GetVertexIndex(src);// vector<W> dist,记录srci-其他顶点最短路径权值数组dist.resize(n, MAX_W);// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组pPath.resize(n, -1);// 先更新srci->srci为缺省值dist[srci] = W();//cout << "更新边:i->j" << endl;// 总体最多更新n轮for (size_t k = 0; k < n; ++k){// i->j 更新松弛bool update = false;cout << "更新第:" << k << "轮" << endl;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){// srci -> i + i ->jif (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j]){update = true;cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;dist[j] = dist[i] + _matrix[i][j];pPath[j] = i;}}}// 如果这个轮次中没有更新出更短路径,那么后续轮次就不需要再走了if (update == false){break;}}// 还能更新就是带负权回路for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){// srci -> i + i ->jif (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j]){return false;}}}return true;}

flyod-warshall(佛洛伊德算法)

Floyd-Warshall算法是有Floyd于1962年提出,其可以计算有向图中任意两点之间的最短路径,此算法利用动态规划的思想将计算的时间复杂度降低为 。其核心思想是,最短路路径的本质就是比较在两个顶点之间中转点,比较经过与不经过中转点的距离哪个更短。类似Bellman-Ford算法,我们将此操作也称为松弛。

代码如下:

	void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath){size_t n = _vertexs.size();vvDist.resize(n);vvpPath.resize(n);// 初始化权值和路径矩阵for (size_t i = 0; i < n; ++i){vvDist[i].resize(n, MAX_W);vvpPath[i].resize(n, -1);}// 直接相连的边更新一下for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (_matrix[i][j] != MAX_W){vvDist[i][j] = _matrix[i][j];vvpPath[i][j] = i;}if (i == j){vvDist[i][j] = W();}}}// abcdef  a {} f ||  b {} c// 最短路径的更新i-> {其他顶点} ->jfor (size_t k = 0; k < n; ++k){for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){// k 作为的中间点尝试去更新i->j的路径if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W&& vvDist[i][k] + vvDist[k][j] < vvDist[i][j]){vvDist[i][j] = vvDist[i][k] + vvDist[k][j];// 找跟j相连的上一个邻接顶点// 如果k->j 直接相连,上一个点就k,vvpPath[k][j]存就是k// 如果k->j 没有直接相连,k->...->x->j,vvpPath[k][j]存就是xvvpPath[i][j] = vvpPath[k][j];}}}// 打印权值和路径矩阵观察数据for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){if (vvDist[i][j] == MAX_W){//cout << "*" << " ";printf("%3c", '*');}else{//cout << vvDist[i][j] << " ";printf("%3d", vvDist[i][j]);}}cout << endl;}cout << endl;for (size_t i = 0; i < n; ++i){for (size_t j = 0; j < n; ++j){//cout << vvParentPath[i][j] << " ";printf("%3d", vvpPath[i][j]);}cout << endl;}}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173372.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Python将PDF转为图片

将PDF转为图片能方便我们将文档内容上传至社交媒体平台进行分享。此外&#xff0c;转换为图片后&#xff0c;还可以对图像进行进一步的裁剪、调整大小或添加标记等操作。 用Python将PDF文件转JPG/ PNG图片可能是大家在一些项目中会遇到的需求&#xff0c;下面将详细介绍如何使用…

Vue+ElementUI项目打包部署到Ubuntu服务器中

1、修改config/index.js中的assetsPublicPath: /,修改为assetsPublicPath: ./ assetsPublicPath: ./2、在build/utils.js中增加publicPath: ../../ publicPath: ../../3、打开终端&#xff0c;在根目录下执行npm run build进行打包&#xff0c;打包成功后会生成dist npm run…

【ESP 保姆级教程】疯狂TFT篇 ——教你从0到1打造太空人时钟① TFT_eSPI、TJpg_Decoder库

系列最终效果,一步步进阶学习 忘记过去,超越自己 ❤️ 博客主页 单片机菜鸟哥,一个野生非专业硬件IOT爱好者 ❤️❤️ 本篇创建记录 2023-10-27❤️❤️ 本篇更新记录 2023-10-27❤️🎉 欢迎关注 🔎点赞 👍收藏 ⭐️留言📝🙏 此博客均由博主单独编写,不存在任何…

[Java/力扣100]判断两棵二叉树是否相同

我希望通过这道题&#xff0c;能进一步了解递归思想和“树是递归定义的”这句话 分析 我们的目的是写一个方法来检验两棵树是否相同 什么叫“两棵树相同”&#xff1f;——相同的位置存在相同的结点 有三种情况&#xff1a;1、两棵树一颗为空一颗不为空——不相同&#xff…

postgresql14管理(六)-备份与恢复

定义 备份&#xff08;backup&#xff09;&#xff1a;通过物理复制或逻辑导出的方式&#xff0c;将数据库的文件或结构和数据拷贝到其他位置进行存储&#xff1b; 还原&#xff08;restore&#xff09;&#xff1a;是一种不完全的恢复。使用备份文件将数据库恢复到备份时的状…

前端 : 用html ,css,js写一个你画我猜的游戏

1.HTML&#xff1a; <body><div id "content"><div id "box1">计时器</div><div id"box"><div id "top"><div id "box-top-left">第几题:</div><div id "box…

C++之C++11引入enum class与传统enum关键字总结(二百五十一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

SpringBoot2.7.14整合redis7

需要的依赖库&#xff1a; <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional></dependency><dependency><groupId>org.springframework.boot</gro…

基于 ARM+FPGA+AD平台的多类型同步信号采集仪开发及试验验证(二)板卡总体设计

2.2 板卡总体设计 本章开发了一款基于 AD7193RJ45 的多类型传感信号同步调理板卡&#xff0c;如图 2.4 所 示&#xff0c;负责将传感器传来的模拟电信号转化为数字信号&#xff0c;以供数据采集系统采集&#xff0c;实现了 单通道自由切换传感信号类型与同步采集多类型传…

车载音频项目

加我微信hezkz17进数字音频系统研究开发交流答疑群(课题组) ー 1&#xff0e;负责此项目的音频链路的设计及其实现 在ADSP21375上实现音频链路的处理。如噪声门&#xff0c;压限器&#xff0c;高低通&#xff0c;PEQ、各种效果等。 2&#xff0e;负责DSP与MCU端SPI协议实现。M…

公众号留言功能有必要开吗?如何开通留言?

为什么公众号没有留言功能&#xff1f;2018年2月12日&#xff0c;TX新规出台&#xff1a;根据相关规定和平台规则要求&#xff0c;我们暂时调整留言功能开放规则&#xff0c;后续新注册帐号无留言功能。这就意味着2018年2月12日号之后注册的公众号不论个人主体还是组织主体&…

华为终端智能家居应用方案

PLC-IoT概述 华为智能PLC-IoT工业物联网系列通信模块是基于电力线宽带载波技术的产品&#xff0c;实现数据在电力线上双向、高速、稳定的传输&#xff0c;广泛适用于电力、交通、工业制造、智能家居等领域&#xff0c;PLC-IoT通信模块包含头端和尾端两种类型&#xff0c;头端配…

目标检测概述

1.是什么&#xff1f; 目标检测是计算机视觉领域的核心问题之一&#xff0c;其任务就是找出图像中所有感兴趣的目标&#xff0c;确定他们的类别和位置。由于各类不同物体有不同的外观&#xff0c;姿态&#xff0c;以及不同程度的遮挡&#xff0c;加上成像是光照等因素的干扰&a…

FL Studio21.2演示版下载

FL Studio 21.2 带有 stem 分离和 FL Cloud&#xff0c;这是一项专为 FL Studio 打造的具有里程碑意义的新服务。其他新功能包括 FL Studio Fruity Edition 的 Audio Clips&#xff08;音频剪辑&#xff09;和一个新的模拟建模合成器 Kepler。 为庆祝 FL Studio 21.2 的发布&am…

【C语言】指针那些事(上)

C语言系列 文章目录 文章目录 一. 字符指针 一.&#xff08;1 &#xff09; 数组创建空间的地址和指针指向的地址 二. 指针数组 二.&#xff08;1&#xff09;指针数组模拟一个二维数组 ​ 三. 数组指针 三.(1)数组指针到底有什么用 对一维数组没有什么用 二.(…

React-表单受控绑定和获取Dom元素

一、表单受控组件 1.声明一个react状态 说明&#xff1a;useState const [value,setValue]useState("") 2.核心绑定流程 2.1绑定react状态 <div><input value{value}type"text"></input> 2.2绑定onChange事件 说明&#xff1a;e.…

Java工具库——Commons IO的50个常用方法

工具库介绍 Commons IO&#xff08;Apache Commons IO&#xff09;是一个广泛用于 Java 开发的开源工具库&#xff0c;由Apache软件基金会维护和支持。这个库旨在简化文件和流操作&#xff0c;提供了各种实用工具类和方法&#xff0c;以便更轻松地进行输入输出操作。以下是 Com…

python:使用Scikit-image对遥感影像进行傅里叶变换特征提取(fourier)

作者:CSDN @ _养乐多_ 在本博客中,我们将介绍如何使用Scikit-Image来进行傅里叶变换特征提取(fourier),并且提供一个示例代码,演示了如何在单波段遥感图像上应用这些方法。 傅里叶变换特征提取是一种数学工具,用于将图像中的细节、纹理和边缘信息以不同频率的方式呈现…

关爱通分享丨三大步九小步—重构管理价值链,驱动福利进阶

企业人才素质不断提升&#xff0c;对生活品质和精神层面的追求越来越高&#xff0c;也倒推企业不断改善管理、健全福利制度&#xff0c;激发员工的积极性和创造力。企业成本激增&#xff0c;但预期价值未能完全实现&#xff0c;为此&#xff0c;笔者在价值驱动管理理念的基础上…

PostgreSQL 基础知识

执行环境&#xff1a; psql 1. 创建一个表格 CREATE TABLE customers ( customer_id serial PRIMARY KEY,firstname VARCHAR(100) NOT NULL,lastname VARCHAR(100) NOT NULL,username VARCHAR(50) UNIQUE NOT NULL,password VARCHAR(50) NOT NULL,email VARCHAR(255) UNIQUE …