刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行)

1.运行效果:
刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损)_哔哩哔哩_bilibili

环境库:

NumPy 版本: 1.19.4
Pandas 版本: 0.23.4
Matplotlib 版本: 2.2.3
Keras 版本: 2.4.0
TensorFlow 版本: 2.4.0
sklearn  版本: 0.19.2

如果库版本不一样, 一般也可以运行,这里展示我运行时候的库版本,是为了防止你万一在你的电脑上面运行不了,可以按照我的库版本进行安装并运行 

2.数据集介绍

试验数据来源于美国纽约预测与健康管理学 会(PHM)2010年高 速 数 控 机 床 刀 具 健 康 预 测 竞 赛的开放数据。数据集下载链接

链接:https://pan.baidu.com/s/17GbX52SlPScsv0G7fDp5dQ 
提取码:4561

实验条件如表格 所示 

实验数据获取的形式是:   试验在上述切削条件下重复进行 6 次全寿命周期试验。端面铣削材料为正方形, 每次走刀端
 面铣的长度为 108mm 且 每 次 走 刀 时 间 相 等 , 每次走刀后测量刀具的后刀面磨损量。试验监测数据有x、y 、 z 三向
 铣削力信号 , x 、 y 、 z 三向铣削振动信号以及声发射均方根值。
  6次的数据集中  3次实验中有测量铣刀的磨损量,其他3次没有测量,作为比赛的测试集。

文件c1、c4、c6为训练数据,文件c2、c3、c5为测试数据:第1列:X维力(N)
第2列:Y维力(N)
第3列:Z维力(N)
第4列:X维振动(g)
第5列:Y维振动(g)
第6列:Z维振动(g)
第7列:AE-RMS (V)刀具主轴转速为10400 RPM;进给速度1555 mm/min;切割Y深度(径向)为0.125 mm;
Z轴向切割深度为0.2 mm。数据以50khz /通道采集。


  系统测量的实验条件和实验方式如下所示:

3.本次项目介绍 

c1为数据集

version.py是查看你本地环境库的版本,为了方便你运行代码写的脚本

MSCNN_LSTM_Attention.py是读取原始数据,预处理,磨损状态分类的主程序。

数据量较大,因为本地电脑配置一般, 所以只用了c1数据集进行实验,只需要修改数据集路径,也可以调用c2-c6数据集。

数据集一共有315个表格

数据集开始位置

数据集截止位置:

参考知网论文:《基于改进卷积门控循环神经网络的刀具磨损状态识别》一文中,对初期磨损、正常磨损、急剧磨损的划分,取1-54为初期磨损,55-205为正常磨损、206-315为急剧磨损

数据预处理:

采用的数据是每个表格的第四列数据,即X维振动信号。如果想做数据融合(即把Y维和Z维振动信号也用上,可以私信定制)

对原始数据归一化后,采用10000的样本长度不重叠切割样本, 这次为做平衡数据集下的实验,每种状态取1000个样本。

实验部分:

训练集与测试集的比例:4:1

批量:64

优化器:Adam

学习率:0.001

模型(MSCNN_LSTM_Attention,每个样本的形状原为(10000,1),但是为了让网络训练更快,目前代码中变形为(250,40),两个输入形式在代码中都可以使用,只要稍微改动一下即可

 特征(训练集和测试集)形状

 标签(训练集和测试集)形状

4.效果(测试集准确率100个epoch训练完为94.67%)

测试集混淆矩阵 (以百分比形式展示)

测试集混淆矩阵(以个数为展示) 

对项目感兴趣的,可以关注最后一行


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import keras
import tensorflow as tf
from sklearn import __version__ as sklearn_version
from matplotlib import __version__ as matplotlib_versionprint(f"NumPy 版本: {np.__version__}")
print(f"Pandas 版本: {pd.__version__}")
print(f"Matplotlib 版本: {matplotlib_version}")
print(f"Keras 版本: {keras.__version__}")
print(f"TensorFlow 版本: {tf.__version__}")
print(f"sklearn  版本: {sklearn_version}")
#数据集和代码压缩包:https://mbd.pub/o/bread/ZZWblphr

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173467.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot小项目——简单的小区物业后台管理系统 认证鉴权 用户-角色模型 AOP切面日志 全局异常【源码】

目录 引出一、应用到的技术栈Spring、Spring MVC、Spring Boot基础SpringBoot进阶、SpringMVC原理、AOP切面MyBatis 数据库相关JavaWeb基础:Session等前端Vue、JavaScript、Bootstrap 二、后台管理系统的功能登录功能1.用户名密码登录2.验证码的登录 报修业务的处理…

电路器件认识与KV STUDIO的实践(二)

当当当当,下班了,下面来记录一下小编学习到的电气知识与plc的应用吧!!! 目录 电路元器件的认识 断路器(作用是过载保护、短路保护、地线故障保护和手动控制) 漏电断路器(当漏电电…

AC修炼计划(AtCoder Regular Contest 164)

传送门:AtCoder Regular Contest 164 - AtCoder A.签到题,在此不做赘述 B - Switching Travel 这题本来该是秒的,但是因为没有考虑清楚环的问题而被卡半天,其实我们不难发现,要想使题目存在节点,就得让该节…

【数据结构练习题】删除有序数组中的重复项

✨博客主页:小钱编程成长记 🎈博客专栏:数据结构练习题 🎈相关博文:消失的数字 — 三种解法超详解 删除有序数组中的重复项 1.🎈题目2. 🎈解题思路3. 🎈具体代码🎇总结 1…

【鸿蒙软件开发】ArkTS基础组件之TextClock(时间显示文本)、TextPicker(滑动选择文本)

文章目录 前言一、TextClock1.1 子组件1.2 接口参数TextClockController 1.3 属性1.4 事件1.5 示例代码 二、TextPicker2.1 子组件2.2 接口参数 2.3 属性2.4 事件2.5 示例代码 总结 前言 TextClock组件:通过文本将当前系统时间显示在设备上。支持不同时区的时间显示&#xff0…

ELASTICO-A Secure Sharding Protocol For Open Blockchains

INTRO 在中本聪共识中,通过POW机制来公平的选举leader,不仅非常消耗power,并且拓展性也不好。现在比特币中是7 TPS,和其他的支付系统相比效率相差甚远。 当前的许多拜占庭共识协议,并不支持在一个开放的环境中使用&a…

论文速递 TMC 2023 | RoSeFi: 一种利用商用WiFi设备进行稳健的久坐行为监测系统

注1:本文系“最新论文速览”系列之一,致力于简洁清晰地介绍、解读最新的顶会/顶刊论文 TMC 2023 | RoSeFi: 一种利用商用WiFi设备进行稳健的久坐行为监测系统 原文链接:https://ieeexplore.ieee.org/abstract/document/10269067 本文提出了一种稳健的久坐行为监测系统RoSeFi。…

Spring AOP源码解读

今天我们来分析Spring中AOP的源码&#xff0c;主要是关于SpringAOP是如何发挥作用的。 前期准备 首先我们需要有一个Spring AOP项目&#xff0c;添加好了SpringAOP的依赖。 <dependency><groupId>org.springframework</groupId><artifactId>spring-co…

MAYA教程之模型的UV拆分与材质介绍

什么是UV 模型制作完成后&#xff0c;需要给模型进行贴图&#xff0c;就需要用到UV功能 UV编译器介绍 打开UI编译器 主菜单有一个 UV->UV编译器&#xff0c;可以点击打开 创建一个模型&#xff0c;可以看到模型默认的UV UV编译器功能使用 UV模式的选择 在UV编译器中…

单调队列和单调栈

单调队列 这种涉及到维护子数组的最大/小值的操作&#xff0c;一般都会是 1 剑指 Offer 59 - II. 队列的最大值 2 239. 滑动窗口最大值 3 1438. 绝对差不超过限制的最长连续子数组 单调栈

Unity之ShaderGraph如何实现冰冻效果

前言 今天我们来实现一个冰冻的效果,非常的炫酷哦。 如下图所示: 主要节点 Voronoi:根据输入UV生成 Voronoi 或Worley噪声。Voronoi 噪声是通过计算像素和点阵之间的距离生成的。通过由输入角度偏移控制的伪随机数偏移这些点,可以生成细胞簇。这些单元的规模以及产生的…

什么?Postman也能测WebSocket接口了?

01、WebSocket 简介 WebSocket是一种在单个TCP连接上进行全双工通信的协议。 WebSocket使得客户端和服务器之间的数据交换变得更加简单&#xff0c;允许服务端主动向客户端推送数据。在WebSocket API中&#xff0c;浏览器和服务器只需要完成一次握手&#xff0c;两者之间就直…

pycharm 2023.2.3设置conda虚拟环境

分两步&#xff1a; &#xff08;1&#xff09;设置Virtualenv Environment &#xff08;2&#xff09;设值Conda Executable 加载conda环境&#xff0c;然后选择conda环境

hadoop使用简介

git clone hadoop源码地址&#xff1a;https://gitee.com/CHNnoodle/hadoop.git git clone错误&#xff1a; Filename too long错误&#xff0c;使用git config --global core.longpaths true git clone https://gitee.com/CHNnoodle/hadoop.git -b rel/release-3.2.2 拉取指定…

elementui时间日期组件右边自定义图标

效果 改为 首先是将左边的清除图标关闭 然后是将右边的图标设置为display&#xff1a;none,设置宽度&#xff0c;左右内边距 最后是 mounted() {/*思路&#xff1a;通过document文档&#xff0c;选中日期时间选择器元素&#xff0c;然后创建一个i标签&#xff0c;并指定其类…

[Leetcode] 0108. 将有序数组转换为二叉搜索树

108. 将有序数组转换为二叉搜索树 题目描述 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 示例 1&#xff1a…

10分钟了解JWT令牌 (JSON Web)

10分钟了解JSON Web令牌&#xff08;JWT&#xff09; JSON Web Token&#xff08;JWT&#xff09;是目前最流行的跨域身份验证解决方案。今天给大家介绍JWT的原理和用法。 1.跨域身份验证 Internet服务无法与用户身份验证分开。一般过程如下。 1.用户向服务器发送用户名和密码。…

React之如何捕获错误

一、是什么 错误在我们日常编写代码是非常常见的 举个例子&#xff0c;在react项目中去编写组件内JavaScript代码错误会导致 React 的内部状态被破坏&#xff0c;导致整个应用崩溃&#xff0c;这是不应该出现的现象 作为一个框架&#xff0c;react也有自身对于错误的处理的解…