6G关键新兴技术- 智能超表面(RIS)技术演进

摘要:

根据欧盟5G公私联盟协会定义,可重构智慧表面技术是由能够任意塑造电磁波面的材料组成,几乎是被动设备,可以适应或改变发射器和接收器之间的无线电信号。

一、产品定义及范围

根据欧盟5G公私联盟协会(5G Infrastructure Public-Private Partnership, 5GPP)定义,可重构智慧表面(Reconfigurable Intelligent Surface, RIS)技术是由能够任意塑造电磁波面的材料组成,几乎是被动(Passice)设备,可以适应或改变发射器和接收器之间的无线电信号。

另一种定义则是由许多波长反射元件所组成的阵列模组,每个反射元件皆可独立控制,透过主动智慧调控,让讯号波束在特定方向上增强并反射,甚至可以抑制或消除干扰讯号。以解决6G所采用的太赫兹因绕射性差,导致基地台讯号容易被墙壁等障碍物所阻挡的问题。可以应用于高频覆盖增强、绿色通讯、辅助电磁波环境感知和高精度定位等场景。

可重构智慧表面(RIS)技术在行动通讯领域有较广泛的讨论,且已经从学术领域的前期实验室开发,演进到MWC 2023展会中厂商展出的原型与实证场域的示范。针对此项技术有诸多类型与称呼,但在功能上近乎相同,主要用于解决非视距传输、降低覆盖缺口等,相关名词包含可重构反射表面(Reconfigurable Reflecting Surfaces, RRS)、智慧表面( Smart Surface) 、透射超表面(Transmissive Metasurfaces)、大型智慧超表面(Large Intelligent Metasurface, LIM)、软体控制超表面(Software-controlled Metasurface)、智慧反射阵列(Smart reflect-arrays)、软体定义表面(Software -defined Surface , SDS)以及主动式智慧表面(Passive intelligent surface , PIS)等。

二、产业技术趋势

预期6G世代,由于频谱稀缺性与对高传输量的需求,将往高频段的次太赫兹(Sub- Terahertz)与太赫兹(Terahertz, THz)发展,开发成功后,6G的资料传输率将是5G的10~100倍,可达每秒100Gbps,甚至1Tbps以上。但受限于太赫兹因绕射性差,导致基地台讯号容易被墙壁等障碍物所阻挡的问题。有效部署RIS作为可控表面可以强化网路容量和覆盖范围,同时也为绿色通讯、辅助电磁波环境感知和高精度定位等场景应用创造机会。 RIS可以设计为自配置和无线网路基础设施的一部分,调整其电磁特性以因应动态流量需求和传播特性。

使用RIS的主要优势在于它们是所谓的被动元件,为极低功率电子设备,代表了一种环境友好且低成本的解决方案,可以部署在墙面、天花板、广告牌、灯柱、活动车辆等等情境中,将用作可重新配置的反射器或收发器,以实现大规模的传输作业;而简易安装为重要设计考量项目,用以推广此项技术的广泛使用。

3GPP Release-18虽然已列RIS为候选研究项目之一,但目前仍未被纳入正式工作项目。随着相关技术的演进与原型推出,RIS相关技术的早期标准化作业预期有望在Release-19或后续标准制定中启动。此外欧洲RISE-6G、中国智能超表面技术联盟(RIS TECH Alliance, RISTA)等产业联盟陆续投入技术架构、标准规范、产业生态系的研究,显示此项技术备受重视。

三、国际大厂技术发展趋势

(一)韩国电信(KT):可重构智慧表面(RIS)

KT与首尔国立大学研究团队合作开发的RIS可以扩大太赫兹(THz)波束的接收区域。装置能够调整无线电传输和反射方向的技术可以用于难以设置基站或中继设备的地区。 RIS可根据无线电波的特性调整发射功率,通过将外部信号发射到建筑物内或以必要的角度反射能避开障碍物,从而提高无线电接收盲区的覆盖范围。藉由此技术与相关材料搭配,达成低成本、简单安装、环境友善的目标。

MWC 2023展会中展示产品原型,并以模型展示在办公室实际场域的测试成果,透过讯号传递指令,可使RIS装置将无线电波束传至指定方向,无线电波束容易受到水泥墙等装潢所阻断,透过RIS装置可将波束传递至玻璃隔间的会议室内,用以改善办公大楼内讯号盲区的无线通信品质,降低扩充通讯装置与布线的成本。

在这里插入图片描述

(二)韩国SKT:6G RIS玻璃

SKT利用广泛用于建筑物外部的「Low-E玻璃」材料开发出可使用RIS的技术,作为6G高频段的通讯技术。 Low-E玻璃是在玻璃的一面镀上一层薄薄的银膜制成的产品,它可以透过大部分的可见太阳光线,并反射相当一部分的太阳光线。 Low-E玻璃因其优良的绝缘性能而被广泛用作建筑外墙材料,但它也具有阻挡无线电波的性能,不利于移动通信频率的传输。

2023年2月SKT与韩国东友精密化学(DONGWOO FINE-CHEM)合作开发的RIS应用技术使得生产6G RIS玻璃成为可能,这款玻璃可以传输光和无线电波,同时保持绝缘性能。 SKT 预计新开发的6G RIS玻璃的商业化将有助于提高无线通讯品质,例如扩大6G室内覆盖范围。

2022年8月,SKT开发出5G/LTE频段的透明天线和RIS技术,并将透明天线应用于部分市区公车的公共Wi-Fi的LTE路由器,成功实现商用。规划透过克服高频段限制的技术(例如创新天线技术)确保从5G Advanced到6G的主要技术。

在这里插入图片描述

(三)韩国三星(SAMSUNG):可重构智慧表面(RIS)

三星对可重构智慧表面(RIS)领域之研究,是以超材料(metamaterial)构成的平面,可提升波束锐利度,进而将无线讯号精准导向或反射至指定方位。此技术有助减少高频讯号(如毫米波)的穿透损耗和受到阻挡的状况。三星RIS透镜技术可将讯号强度提升4倍,波束导向范围增加1.5倍,有助减少高频讯号(如毫米波)的穿透损耗和受到阻挡的状况。

(四)日本NEC:智慧表面(Smart Surface)

2022年1月NEC欧洲实验室开发出第一个完全被动智慧表面(smart surface)的原型让智慧表面有望进入下阶段标准制定与量产的准备,并且达成低延迟的要求透过RIS技术可在开放空间控制和提供强大且一致的5G无线信号适合在火车站、购物区和5G连接工厂等大型开放空间建立公共和私人网路。

2022年NEC开发智慧表面仍需外部控制,未来将整合到现有的无线网路中,降低电信营运商的安装和维护成本。为了实践更快的重新配置速度,将使智慧表面能够直接插入现有的符合O-RAN的网路架构,其中RAN智慧控制系统(RAN Intelligent Controller, RIC)可以直接与设备交换讯息并更改其配置,目标在2024年实现自我配置(Self-configuration)功能。

在这里插入图片描述

(五)NTT DOCOMO:透射超表面(Transmissive Metasurface)

NTT DOCOMO于2023年1月进行世界首次在窗户上进行透射超表面的试验,以将室内无线电波传输到建筑物的室外底部,改进了建筑底部的毫米波连接与覆盖。实验使用的28 GHz 频段的透射超表面,可使穿过玻璃窗的毫米波波段向特定方向弯曲,室内波束朝向建筑物外部的底部,可扩大建筑物底部周围的区域覆盖范围。薄膜状材料附着在内侧的窗户玻璃上,使其更易于安装,其透明度不会破坏景观和现有设计。透射超表面的设计不会干扰其他频段,例如LTE和Sub-6频段。

过去高频段的无线电波难以到达建筑物屋顶上安装的发射基地台视线之外的地方,因此建筑物底部常成为讯号盲区。解决方案通常需新增天线安装在邻近的结构物上,但也存在因景观等问题无法安装的情况,透过此项技术不仅可以减少装置安装成本,且利用透射表面也可以满足扩增讯号覆盖、不须能源、安装便利及美观等需求。
在这里插入图片描述

(六)中兴通讯:可重构智慧超表面

中兴通讯早在MWC 2022已首次发表RIS解决方案,在MWC 2023上发布最新一代可重构智慧超表面解决方案:「Dynamic RIS」。中兴通讯Dynamic RIS基于基站内生智慧,透过5G基站和RIS动态协同波束赋形演算法,可实现RIS动态波束扫描和使用者追踪,从而实现更多的覆盖,更好的用户体验,以及移动性支援。

中兴通讯持续推进RIS商用进程。在组网方面,2022年8月在上海完成了Dynamic RIS外场验证。在该验证中,使用一个毫米波AAU和一个Dynamic RIS组网,仅用一个RIS实现10,000平方公尺的覆盖,实现了毫米波AAU 30%的覆盖提升。在该覆盖区域使用者下载平均速率提升6倍,上传平均速率提升20倍。
在这里插入图片描述

四、结论

可重构智慧表面(RIS)可视为是5G Advance迈向6G的高频段(毫米波、太赫兹),对于扩大覆盖区域、提升通讯品质、强化传输效能、节约能源的关键技术。近几年逐渐从学术研发,逐步转为原型及场域试验,甚至部份厂商的产品已经达到可以商业化应用的程度。 MWC 2023可以看到更多的电信商与设备商展示其RIS的原型系统与实证成果,RIS成为3GPP标准制定候选技术的能见度大增。

透明与穿透力成为新兴RIS技术之一,透过玻璃材料改良、薄膜等新兴技术也在近期逐步迈入场域试验,有别于被动电子元件的型态,更加强调穿透力、安装便利性、美观性,几乎隐藏于日常的建筑与装潢设计中。

下世代行动网路更重视环境永续、净零排放等议题,势必加强电信产业在能源效率、设备碳排放、可回收再利用、可分解等需求。目前Ericsson已讨论到未来万物联网的情境下,如何达到电信设备「零耗能」的可能性,因此RIS成为欧美、北亚地区的学研单位、联盟及重要厂商积极投入资源开发的关键技术。

厂商目前主要着眼于5G投资的回收与变现,普遍对于6G发展处于观望阶段。产业链倚靠4G/5G的发展奠定基础与技术能量,在半导体、关键零组件与资通讯硬体研发制造与组装等领域具领先优势,且有政府支持的RIS研发计画。但相较于日、韩竞争对手,厂商相对在RIS的研发投入上相对起步较慢,知名电信营运商与设备商目前都已进入场域试验阶段,对未来标准将具有领导能力,我国业者未来应思考在6G标准制定前,积极布局RIS技术发展的能量储备。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173879.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网络协议】聊聊TCP如何做到可靠传输的

网络是不可靠的,所以在TCP协议中通过各种算法等机制保证数据传输的可靠性。生活中如何保证消息可靠传输的,那么就是采用一发一收的方式,但是这样其实效率并不高,所以通常采用的是累计确认或者累计应答。 如何实现一个靠谱的协议&…

这个第一个输出为啥是2 不是4 啊?

#include <iostream> using namespace std;class Point{ public:int x;int y;Point(int x1, int y1) : x(x1), y(y1) //成员初始化列表{ }int getDistance() {return x * x y * y;} };void changePoint1(Point point) //使用对象作为函数参数 {point.x 1;point.y -…

蚁群算法求包含34个国内城市的TSP,和最优解相差没那么大

文章目录 引言蚁群觅食算法原理代码实现ACO求解TSP整数规划求解TSP 相关阅读 引言 上一篇介绍的差分进化算法&#xff0c;很适合求解连续变量的优化问题&#xff1b;但针对组合优化问题&#xff0c;就不是很适用了。 至于哪一种智能优化算法更适合求解组合优化问题&#xff0…

大数据调度最佳实践 | 从Airflow迁移到Apache DolphinScheduler

迁移背景 有部分用户原来是使用 Airflow 作为调度系统的&#xff0c;但是由于 Airflow 只能通过代码来定义工作流&#xff0c;并且没有对资源、项目的粒度划分&#xff0c;导致在部分需要较强权限控制的场景下不能很好的贴合客户需求&#xff0c;所以部分用户需要将调度系统从…

【Java网络原理】 四

本文主要介绍了TCP/IP五层协议中的应用层常见的数组组织格式和传输层UDP协议。 一.应用层 1.网络通信数据的实质 网络上传输的数据&#xff0c;本质就是字符串&#xff08;准确的说&#xff0c;是二进制的字符串&#xff09; Java中的各种对象&#xff0c;是无法直接传输的 &…

微信小程序设计之主体文件app-wxss/less

一、新建一个项目 首先&#xff0c;下载微信小程序开发工具&#xff0c;具体下载方式可以参考文章《微信小程序开发者工具下载》。 然后&#xff0c;注册小程序账号&#xff0c;具体注册方法&#xff0c;可以参考文章《微信小程序个人账号申请和配置详细教程》。 在得到了测…

android studio启动Task配置

Android studio 高版本默认不开启Task配置&#xff0c;需要自己手动开启 1.低版本配置路径&#xff1a;&#xff08;复制他人图片&#xff09; 2.高版本路径&#xff1a;添加下图勾选配置即可 3.gradle task 3.1 初识task gradle中所有的构建工作都是由task完成的,它帮我们处…

公司电脑如何限制安装软件

公司电脑如何限制安装软件 安企神终端管理系统下载使用 在企业环境中&#xff0c;电脑已经成为企业中必不可少的办公工具&#xff0c;确保员工的生产力和公司的信息安全是至关重要的。为了实现这一目标&#xff0c;公司可能会限制员工在某些情况下安装软件或者由管理员来为终…

Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)

这是继之前文章&#xff1a; Elasticsearch&#xff1a;使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation &#xff08;一&#xff09; Elasticsearch&#xff1a;使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation &#xff08;二&…

计算机网络【CN】介质访问控制

信道划分介质访问控制 FDMTDMWDMCDM【掌握eg即可】 随机介质访问控制 CSMA 1-坚持CSMA 非坚持CSMA p-坚持CSMA 空闲时 立即发送数据 立即发送数据 以概率P发送数据&#xff0c;以概率1-p推迟到下一个时隙 忙碌时 继续坚持侦听 放弃侦听&#xff0c;等待一个随机的时…

【大数据Hive】hive 表数据优化使用详解

目录 一、前言 二、hive 常用数据存储格式 2.1 文件格式-TextFile 2.1.1 操作演示 2.2 文件格式 - SequenceFile 2.2.1 操作演示 2.3 文件格式 -Parquet 2.3.1 Parquet简介 2.3.2 操作演示 2.4 文件格式-ORC 2.4.1 ORC介绍 2.4.2 操作演示 三、hive 存储数据压缩优…

基于STM32的示波器信号发生器设计

**单片机设计介绍&#xff0c;基于STM32的示波器信号发生器设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序文档 六、 文章目录 一 概要 基于STM32的示波器信号发生器是一种高性能的电子仪器&#xff0c;用于测试和分析电路中的电信号。在该系统中&a…

知识管理的PSCA循环

前言&#xff1a;在PMP备考第二章《环境》部分&#xff0c;面对项目的复杂性&#xff0c;提到了知识管理的PSDA循环&#xff0c;本篇博客主要谈一下什么是PSDA循环&#xff0c;以及我们面对复杂的环境&#xff0c;如何提升自己的学习能力和认知水平。 目录 知识的冰山模型 P…

【MySQL架构篇】SQL执行流程与缓冲池

文章目录 1. SQL执行流程2. 数据库缓冲池(Buffer Pool)2.1 缓冲池概述2.2 缓冲池如何读取数据2.3 查看和设置缓冲池的大小2.4 多个Buffer Pool实例2.5 引申问题 1. SQL执行流程 查询缓存&#xff1a;因为查询效率往往不高&#xff0c;所以在MySQL8.0之后就抛弃了这个功能解析器…

手机apn介绍

公司遇到一件很棘手的事情&#xff0c;app发版之后&#xff0c;长江以北地方的用户网络信号很好&#xff0c;但是打开app之后网络连接不上&#xff0c;而长江以南的用户网络却很好。大家找了很多资料&#xff0c;提出一些方案&#xff1a; 1、是不是运营商把我们公司的ip给限制…

考点之数据结构

概论 时间复杂度和空间复杂度是计算机科学中用来评估算法性能的重要指标。 时间复杂度&#xff1a; 时间复杂度衡量的是算法运行所需的时间。它表示算法执行所需的基本操作数量随着输入大小的增长而变化的趋势。 求法&#xff1a; 通常通过分析算法中基本操作执行的次数来…

Linux下自动挂载U盘或者USB移动硬盘

最近在折腾用树莓派&#xff08;实际上是平替香橙派orangepi zero3&#xff09;搭建共享文件服务器&#xff0c;有一个问题很重要&#xff0c;如何在系统启动时自动挂载USB移动硬盘。 1 使用/etc/fstab 最开始尝试了用/etc/fstab文件下增加:"/dev/sda1 /home/orangepi/s…

YouTube博主数据信息资源

YouTube博主数据信息资源 &#x1f525;我是一位拥有10年编程经验的程序猿&#xff0c;为你带来一个全新的优质资源 &#x1f50d;您是否在寻找最新、最活跃的YouTube博主数据&#xff0c;以助力你的项目、营销或研究&#xff1f; 我们的数据&#xff0c;您的优势&#xff1a;…

网络基础-4

链路聚合技术 根据灵活性地增加网络设备之间的带宽供给增强网络设备之间连接的可靠性节约成本 链路聚合 是将两个或更多数据信道结合成一个单个的信道&#xff0c;该信道以一个单个的更高带宽的逻辑链路出现。链路聚合一般用来连接一个或多个带宽需求大的设备&#xff0c;例…

[毕设记录]@开题调研:一些产品

我感觉产品能代表落地的一些实际应用&#xff0c;会和研究的角度有些差别&#xff0c;但是需求和兴趣往往是从现实中来的&#xff0c;在上一篇blog里面看外国blog的时候顺着搜搜到了很多国外的智慧校园chatbot解决方案 文章目录 Comm100streebomodern campusUniBuddy Comm100 …