C++STL---Vector、List所要掌握的基本知识

绪论​
拼着一切代价,奔你的前程。 ——巴尔扎克;本章主要围绕vector和list的使用,以及容器底层迭代器失效问题,同时会有对原码的分析和模拟实现其底层类函数。​​​​话不多说安全带系好,发车啦(建议电脑观看)。

附:红色,部分为重点部分;蓝颜色为需要记忆的部分(不是死记硬背哈,多敲);黑色加粗或者其余颜色为次重点;黑色为描述需要


1.Vector

vector 重要成员函数具体有
构造函数vetor()
析构函数~vector()
迭代器类函数begin()、end()、rbegin()、rend()、…
容量类函数resize()、size()、capacity()、reserve()、…
元素访问类函数operator[]、front()、back()、…
修改类函数push_back()、pop_back()、inser()、erase()、clear()、…
非成员函数swap()、relational operator()

——————————————

在这里插入图片描述Vector就像一个动态的数组也就是顺序表(有些时候可以想象成常规数组),也就是在写好的类中进行一定的函数操作,其中函数操作也就是上面所写。


1.1构造函数

函数作用函数原型
rang(迭代器)template <class InputIterator>vector (InputIterator first, InputIterator last,const allocator_type& alloc = allocator_type());
default(无参的全缺省的)explicit vector (const allocator_type& alloc = allocator_type());
fill(初始化vector为n个value值)explicit vector (size_type n, const value_type& val = value_type(),const allocator_type& alloc = allocator_type());
copy(拷贝构造)vector (const vector& x);
附:其中的const allocator_type& alloc = allocator_type())为空间配置器,这里提供了可以修改的缺省值,当你可以修改使用自己的内存池,基本不用修改STL内部提供的内存池
//初始化vector的方法
vector<int> v;//缺省
vector<int> v1(10,0);//初始化0个10
vector<int> v2(v1.begin(),v1.end());//迭代器从begin到end初始化
vector<int> v3(v2);//拷贝构造

1.2析构函数

在使用中不用去管因为其会自动执行释放构造函数所申请的空间


1.3迭代器类函数

知识点:

1.3.1begin()、end()、rbegin()、rend()

此处begin、end和string中的差不多用来指向结构中的数据,begin指向vector的首元素(类似于数组的首元素)、end指向的是数组最后一个元素的下一个位置,相反的rbegin指向的是数组的最后一个元素,而rend指向的是第一个元素的前一个位置无
其中可以发现begin指向vector内的数据,而end则不会指向vector内

练习使用:

	vector<int> v(10, 1);v.push_back(2);vector<int>::iterator it = v.begin();//指向vector首元素的1while (it != v.end()){cout << *it << ' ';it++;}//正向打印出所有元素:1 1 1 1 1 1 1 1 1 1 2 类似于指针cout << endl;vector<int>::reverse_iterator rit = v.rbegin();while (rit != v.rend()){cout << *rit << ' ';rit++;//注意此处仍然是++而不是--}//反向的打印出所有元素:2 1 1 1 1 1 1 1 1 1 1  类似于指针

附:cbegin、cend、crbeing、crend 是针对于const类型的,用法一样就不展开讲了。

1.4容量类函数

知识点:

1.4.1size()

函数原型:size_type size() const;
功能:查看vector中有几个元素。

vector<int> v(10,1);
v.size();//返回10

1.4.2capacity()

函数原型:size_type capacity() const;
功能:查看vector的capacity。

vector<int> v(10,1);
v.capacity();//在VS2019IDE环境下每次扩容1.5倍 1 ~ 2 ~ 3 ~ 6 ~ 9 ~ 13 ....

1.4.3reserve()

函数原型:void reserve (size_type n);
功能:设置vector的capacity,可提前把capacity设置好避免不断动态扩容的消耗

1.4.4resize()

函数原型:void resize (size_type n, value_type val = value_type());
改变vector的size(size决定了vector容器中的元素个数)

一般来说capacity申请扩展后都不会轻易的缩回

1.4.5empty()

函数原型:bool empty() const;
功能:查看vector内是否有数据,若返回true表示size == 0,否则放回false;

1.4.6shrink_to_fit()

函数原型:void shrink_to_fit();
功能:把capacity缩小到size大小(这条函数不一定执行最终是否执行还得看编译器他是无约束力的(non-binding))

1.5元素访问类函数

知识点:

1.5.1operator[]

函数原型
reference operator[] (size_type n);
const_reference operator[] (size_type n) const;

功能:像数组一样来访问vector中的元素
如:第一个元素v[0]

1.5.2at()

函数原型
reference at (size_type n);
const_reference at (size_type n) const;

功能:访问vector中的元素,但一般来说更多的用operator[]
如:v.at(0);访问第一个元素

1.5.3front()、back()

front函数原型back函数原型
reference front();reference back();
const_reference front() constreference back();

front的功能:找到vector中第一个元素并返回
如:vector<int> v(10,1); v.fornt();//指向向首元素1
back的功能:同理就是找到vector的最后一个元素
如: vector<int> v(10,1); v.back();//指向向最后一个元素1


写到这我觉得没必要再写了(有点浪费时间),对于这些函数可以自行查资料,里面有解释以及函数原型!c++官网,下面我将只写函数的用处,但仍然会把一些细节给写出来!


1.6修改类函数

作用具体函数
尾插push_back()
尾删pop_back()
清除数据clear()
将新的内容覆盖老的内容assign()
在某个位置删除数据erase()
在某处插入数据insert()
交换(直接交换两个对象所指向的地址)swap()

附:对于容器中我们若想在指定位置插入的话其实他并没有find函数来找到所对应的任意位置,对此在c++库中的算法库中其实有一个通用的find()查找函数
函数原型为:
template <class InputIterator, class T>
InputIterator find (InputIterator first, InputIterator last, const T& val);

用法如下:
vector<int> v;//在其中存储着1 2 3 4 5 6 7 find(v.begin(),v.end(),3);//传进迭代器区间,在其中找3,最后返回对应迭代器
这样就能找到容器中的数据并且进行一定的操作。


非成员函数
vector比较重载函数:relational operators
交换函数(用处是当两个是vector要进行交换时,去调用vector修改类中的swap,他是std交换函数的重载类):swap()

对于vector来说,还有个比较重要的点:

vector迭代器失效问题

在vector使用中可能会出现两种迭代器失效的情况:

  1. 当插入数据后的迭代器失效问题:因为在插入数据的情况下,有可能会发生异地扩容,当发生异地时就会导致原本迭代器所指向的位置为一个野指针也就是所说的迭代器失效,所以我们要注意的是迭代器在插入数据后要给迭代器重新赋值,并且在模拟实现插入函数中我们可能会扩容此处也要记得防止迭代器失效而记录迭代器位置,并作出一定的改变
        iterator insert(iterator pos, const T& x){assert(pos <= _finish);assert(pos >= _start);if (_finish == _endofstorage){size_t n = pos - _start;//记录相对位置防止迭代器在扩容后失效reserve(capacity() == 0 ? 4 : capacity() * 2);pos = _start + n;}iterator it = _finish;while (it > pos) {*it = *(it - 1);it--;}*it = x;_finish++;return _start;}
  1. 当删除数据时我们要注意的是,他可能也会有迭代器失效的问题,因为在VS2019IDE下规定当一个迭代器所指向的位置被删除后,该迭代器就已经失效了,我们不能再次的去使用若使用就会报错,而在CentOs7 g++下迭代器会指向物理下的下一个位置(如:1234 删除2后3覆盖了2的位置迭代器就会指向4),此处解决的方法为:更新迭代器让它接收erase的返回值,在c++中规定了erase删除后返回迭代器指向被删除数据的下一个位置,这样才能正确的删除数据, 如:it = erase(it)//删除后需要接收返回的迭代器

vector深浅拷贝问题

当有异地扩容的时候,我们需要去将数据进行拷贝,此处如果是内置类型的话直接进行拷贝然后释放就行了,而对于像string类这种有深浅拷贝问题的就需要注意,我们若用memcpy直接进行的拷贝就会出深浅拷贝问题,对此我们在reserve扩容函数中就需要注意改变写法具体如下。

        void reserve(size_t n){if (n  > capacity()){T* tmp = new T[n];size_t sz = size();if (_start) {//memcpy(tmp, _start, sz * sizeof(T)); 此处对于自定义类型来说是一个浅拷贝了for(size_t i = 0; i < size();i++){tmp[i] = _start[i];//逐个元素的进行赋值操作就能避免}delete[] _start;}_start = tmp;_finish = _start + sz;//这里不用size()因为这样会导致为nullptr , _endofstorage = _start + n;}}

vector反向迭代器的实现

对于vector反向迭代器来说,我们不能像正向一样的直接用一个指针指向start,他们需要从后往前来走(也就表示当reverse_iterartor ++ 时并不是往前走的而是往后的),这样我们就需要重新分装一个反向迭代器的类,并且对操作符++、–重载改变其原理。对此在一个类中我们还需要去实现一些其他的操作符,具体如下:

    template<class iterator>class reverse_iterator{typedef reverse_iterator<iterator> Self;reverse_iterator(iterator t):it(t){}Self& operator++(){it--;return *this;}Self operator++(int){Self tmp (it);it--;return tmp;}Self& operator--(){it++;return *this;}Self operator--(int){reverse_iterator tmp = it;it++;return tmp;}Self& operator*(){reverse_iterator tmp = it;return *(--tmp);}bool operator!=(const Self& t){return it != t.it;}bool operator==(const Self& t){return it == t.it;}private:iterator it;};

模拟实现Vector:

#pragma once
#include<iostream>
#include<stdio.h>
#include<assert.h>using namespace std;namespace bit
{template<class T>class vector{public:// Vector的迭代器是一个原生指针typedef T* iterator;typedef const T* const_iterator;typedef reverse_iterator<iterator> reverse_iterator;reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return  reverse_iterator(begin());}iterator begin() {return _start;}iterator end() {return _finish;}const_iterator cbegin() const{return _start;}const_iterator cend() const{return _finish;}// construct and destroy// //对于直接的构造不做如何处理vector(){}vector(size_t n, const T& value = T()){reserve(n);while (n--) {push_back(value);}}vector(int n, const T& value = T()){reserve(n);while (n--) {push_back(value);}}template<class InputIterator>vector(InputIterator first, InputIterator last){assert(first && last);while(first != last){push_back(*first);first++;}}//现代写法:vector(const vector<T>& v){vector<T> tmp(v.cbegin(),v.cend());swap(tmp);}//传统写法://vector(const vector<T>& v)//{//    //开辟一个空间//    reserve(v.capacity());//    //把数据放进去//    for (auto& e : v)//    {//        push_back(e);//    }//}vector<T>& operator=(vector<T> v){swap(v);return *this;}//void operator++(int)//{//    swap(v);//    return *this;//}~vector(){delete[] _start;_start = _finish = _endofstorage = nullptr;} capacitysize_t size() const{return _finish - _start;}size_t capacity() const{return _endofstorage - _start;}void reserve(size_t n){if (n  > capacity()){T* tmp = new T[n];size_t sz = size();if (_start) {//memcpy(tmp, _start, sz * sizeof(T)); 此处对于自定义类型来说是一个浅拷贝了for(size_t i = 0; i < size();i++){tmp[i] = _start[i];}delete[] _start;}_start = tmp;_finish = _start + sz;//这里不用size()因为这样会导致为nullptr , _endofstorage = _start + n;}}void resize(size_t n, const T& value = T()){if (n < capacity()){_finish = _start + n;}else {reserve(n);while (_finish < _start + n){*_finish = value;++_finish;}}}/access///T& operator[](size_t pos){assert(pos < size());return _start[pos];}const T& operator[](size_t pos)const{assert(pos < size());return _start[pos];}/modify/void push_back(const T& x){/*         if (_finish == _endofstorage){int cp = capacity() == 0 ? 4 : capacity() * 2;reserve(cp);}*_finish = x;_finish++;*/insert(end(), x);}void pop_back(){_finish--;}void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_endofstorage, v._endofstorage);}iterator insert(iterator pos, const T& x){assert(pos <= _finish);assert(pos >= _start);if (_finish == _endofstorage){size_t n = pos - _start;//防止迭代器在扩容后失效reserve(capacity() == 0 ? 4 : capacity() * 2);pos = _start + n;}iterator it = _finish;while (it > pos) {*it = *(it - 1);it--;}*it = x;_finish++;return _start;}iterator erase(iterator pos){assert(pos < _finish);assert(pos >= _start);iterator it = pos + 1;while (it < _finish){*(it - 1) = *it;it++;}_finish--;return pos;}private://给他们初始值是为了预防iterator _start = nullptr; // 指向数据块的开始iterator _finish = nullptr; // 指向有效数据的尾iterator _endofstorage = nullptr; // 指向存储容量的尾};template<class iterator>class reverse_iterator{typedef reverse_iterator<iterator> Self;reverse_iterator(iterator t):it(t){}Self& operator++(){it--;return *this;}Self operator++(int){Self tmp (it);it--;return tmp;}Self& operator--(){it++;return *this;}Self operator--(int){reverse_iterator tmp = it;it++;return tmp;}Self& operator*(){reverse_iterator tmp = it;return *(--tmp);}bool operator!=(const Self& t){return it != t.it;}bool operator==(const Self& t){return it == t.it;}private:iterator it;};}

2.List

在STL的list其实就是数据结构中的带头双向循环列表(若不清楚的建议看看数据机构基础之链表)
在这里插入图片描述

list 重要成员函数具体有
构造函数list()
析构函数~list()
迭代器类函数begin()、end()、rbegin()、rend()、…
容量类函数size()、empty()、…
元素访问类函数front()、back()
修改类函数push_back()、pop_back()、push_front()、inser()、erase()、clear()、…
操作类函数sort() 、 reverse() 、remove() 、…
非成员函数swap()、relational operator()

同样的在list中也不会去详细的简述函数(这些都是熟能生巧的多去查文档),会在后面写道一些细节内容以及函数的功能

2.1构造函数、析构函数

构造函数( (constructor))作用
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list

析构函数不用自己调用,其内部主要包括把所借的内存归还给操作系统操作

2.2迭代器类函数

具体函数作用
begin()返回第一个元素的迭代器
end()返回最后一个元素下一个位置的迭代器
rbegin()返回第一个元素的reverse_iterator,即end位置
rend返回最后一个元素下一个位置的reverse_iterator,即begin位置
注意点在反向迭代器中++,是表示往前走 而不是往后 ; 同理的-- 则表示往后走

2.3容量类函数

具体函数作用
empty()检测list是否为空,是返回true,否则返回false
size()返回list中有效节点的个数

2.4元素访问类函数

具体函数作用
front()返回list的第一个节点中值的引用
back()返回list的最后一个节点中值的引用

2.5修改类函数

具体函数作用
push_back(const value_type& val)在list尾部插入值为val的元素
pop_back()删除list中最后一个元素
push_front(const value_type& val)在list首元素前插入值为val的元素
pop_front()删除list中第一个元素
iterator inser(iterator position, const value_type& val)在pos位置(此处是迭代器)处插入值为val的元素,还能插入一次性n个元素以及用迭代器插入一段数据
iterator erase(iterator position)删除pos迭代器所指向位置的元素,还能一次性删除一段数据erase (iterator first, iterator last)
clear()清空list中的有效元素
swap(list& x))交换两个list中的元素
void resize (size_type n, value_type val = value_type())提前初始化n个空间初始值默认为value_type()//整形为0…

2.5.1list 删除操作时的迭代器失效问题:

list在插入数据时并不会迭代器失效,而在删除时因为当前位置的迭代器所指向的地址空间已经被释放,而形成了迭代器失效。
所以为避免这种情况删除的实现会返回一个迭代器(也就是被删除数据的下一个位置)并且我们需要用接收这个迭代器才能解决失效问题(例:iterator it = l.erase(l.begin()))
通过上面的分析我们能知道当list删除数据后其原本的迭代器会指向被删除的数据的下一个数据,并且返回该位置!对此来实现list的删除:

       iterator erase(iterator pos){Node* cur = pos._Node;Node* prev = cur->_Prev;Node* next = cur->_Next;//一开始记录删除数据的下一个位置prev->_Next = next;next->_Prev = prev;_size--;return iterator(next);//返回next}

2.6操作类函数

具体函数作用
void splice (iterator position, list& x)拼接两个list,还能x指定中的i位置的一个元素拼接,或者是用迭代器确定区域(first,last]进行拼接
remove(valua)删除list中所有等于value值的元素
template <class Predicate> remove_if(Predicate pred)删除所有满足pred仿函数(也可能是函数指针)的元素
unique()删除重复的值
merge(list& x)拼接两个list,他有第二个参数为仿函数(或函数指针)
sort()对list中的数据进行排序,默认为升序,可以改变传递仿函数来自定义Compare比较函数(方法)
reverse()逆序把list中的数据倒过来

2.7list的实现

#pragma once#include<iostream>
using namespace std;namespace bite
{// List的节点类template<class T>struct ListNode{ListNode(const T& val = T()):_val(val),_Prev(nullptr),_Next(nullptr){}ListNode<T>* _Prev;ListNode<T>* _Next;T _val;};//List的迭代器类template<class T, class Ref, class Ptr>struct ListIterator{typedef ListNode<T> Node;typedef ListIterator<T, Ref, Ptr> Self;public:ListIterator(Node* node = nullptr) :_Node(node){}//ListIterator(const Self& l);T& operator*(){return _Node->_val;}Ptr operator->(){return &_Node->_val;}Self& operator++(){_Node = _Node->_Next;return *this;}//后置Self operator++(int){Self tmp(*this);//拷贝构造//其中self是类型、*this是一个具体的对象_Node = _Node->_Next;return tmp;}//前置Self& operator--(){_Node = _Node->_Prev;return *this;}//后置需要一个类型来占位Self& operator--(int){Self tmp(*this);_Node = _Node->_Prev;return tmp;}bool operator!=(const Self& l){return _Node != l._Node;}bool operator==(const Self& l){return _Node == l._Node;}Node* _Node;};template<class T, class Ref, class Ptr>struct RIterator{typedef ListNode<T> Node;typedef RIterator<T, Ref, Ptr> Self;public:RIterator(Node* node = nullptr):_Node(node){}//ListIterator(const Self& l);T& operator*(){return _Node->_val;}Ptr operator->(){return &_Node->_val;}Self& operator++(){_Node = _Node->_Prev;return *this;}//后置Self operator++(int){Self tmp(*this);//拷贝构造//其中self是类型、*this是一个具体的对象_Node = _Node->_Prev;return tmp;}//前置Self& operator--(){_Node = _Node->_Next;return *this;}//后置需要一个类型来占位Self& operator--(int){Self tmp(*this);_Node = _Node->_Next;return tmp;}bool operator!=(const Self& l){return _Node != l._Node;}bool operator==(const Self& l){return _Node == l._Node;}Node* _Node;};//list类template<class T>class list{public:typedef ListNode<T> Node;typedef ListIterator<T, T&, T*> iterator;//将typedef ListIterator<T, const T&, const T&> const_iterator;typedef RIterator<T, T&, T*> reverse_iterator;//将public:///// List的构造void empty_init(){_Head = new Node;//头节点_Head->_Next = _Head;_Head->_Prev = _Head;}list(){empty_init();}list(int n, const T& value = T()){for(int i = 0; i<n;i++){push_back(value);}}template <class Iterator>list(Iterator first, Iterator last){Iterator it = first;while (it != last){push_back(*it);++it;}}void swap(list<T>& l){std::swap(_Head, l._Head);std::swap(_size, l._size);}list(const list<T>& l){empty_init();for (auto nd : l){push_back(nd);}}list<T>& operator=(list<T> l){swap(l);return *this;}~list(){clear();//将申请的空间返还delete _Head;_Head = nullptr;}///// List Iteratoriterator begin(){//return iterator(_Head->_Next);return _Head->_Next;}iterator end(){//return iterator(_Head);return _Head;}const_iterator begin()const{return _Head->_Next;}const_iterator end()const{return _Head;}reverse_iterator rbegin(){return reverse_iterator(_Head->_Prev);}reverse_iterator rend(){return reverse_iterator(_Head);}// List Capacitysize_t size()const{return _size;}bool empty()const{return _size == 0;} List AccessT& front(){return _Head->_Next->_val;}const T& front()const{return _Head->_Next->_val;}//T& back(){return _Head->_Prev->_val;}//const T& back()const{return _Head->_Prev->_val;}// List Modifyvoid push_back(const T& val){ //Node* tail = _Head->_Prev;//Node* newnode = new Node(val);//tail->_Next = newnode;//newnode->_Prev = tail;//_Head->_Prev = newnode;//newnode->_Next = _Head;//_size++;insert(end(), val); }void pop_back() {/*           Node* tail = _Head->_Prev;tail->_Prev->_Next = _Head;_Head->_Prev = tail->_Prev;delete tail;_size--;*/erase(--end()); }void push_front(const T& val) { //Node* head = _Head->_Next;//Node* newnode = new Node(val);//head->_Prev = newnode;//newnode->_Next = head;//_Head->_Next = newnode;//head->_Prev = _Head;//_size++;insert(begin(), val); }void pop_front(){ /*         Node* head = _Head->_Next;head->_Next->_Prev = _Head;_Head->_Next = head->_Next;delete head;_size--;*/erase(begin());} 在pos位置前插入值为val的节点iterator insert(iterator pos, const T& val){Node* cur = pos._Node;Node* newnode = new Node(val);Node* prev = cur->_Prev;prev->_Next = newnode;newnode->_Prev = prev;newnode->_Next = cur;cur->_Prev = newnode;_size++;return iterator(newnode);} 删除pos位置的节点,返回该节点的下一个位置iterator erase(iterator pos){Node* cur = pos._Node;Node* prev = cur->_Prev;Node* next = cur->_Next;prev->_Next = next;next->_Prev = prev;_size--;return iterator(next);}void clear(){iterator it = begin();while(it != end()){it = erase(it);}//for(auto it : )_size = 0;}private:Node* _Head;size_t _size;};
}

本章完。预知后事如何,暂听下回分解。

如果有任何问题欢迎讨论哈!

如果觉得这篇文章对你有所帮助的话点点赞吧!

持续更新大量C++细致内容,早关注不迷路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/174129.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c#使用ExifLib库提取图像的相机型号、光圈、快门、iso、曝光时间、焦距信息等EXIF信息

近期公司组织了书画摄影比赛&#xff0c;本人作为摄影爱好者&#xff0c;平时也会拍些照片&#xff0c;这次比赛当然不能错过。为了提高获奖概率&#xff0c;选了19张图像作为参赛作品。但是&#xff0c;摄影作品要提交图像的光圈、曝光时间等参数。一两张还可以通过电脑自带软…

【uniapp】仿微信支付界面

效果图 完整代码 <template><view class="my-pay-page"><view :style=

软件测试---边界值分析(功能测试)

选取正好等于、刚好大于、刚好小于边界的值作为测试数据 上点: 边界上的点 (正好等于)&#xff1b;必选(不考虑区开闭) 内点: 范围内的点 (区间范围内的数据)&#xff1b;必选(建议选择中间范围) 离点: 距离上点最近的点 (刚好大于、刚好小于)&#xff1b;开内闭外(考虑开…

Redis(windows+Linux)安装及入门

一、概述 Redis是什么&#xff1f; Redis(Remote Dictionary Server)&#xff0c;即远程字典服务 Redis&#xff08;Remote Dictionary Server )&#xff0c;即远程字典服务&#xff0c;是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数…

Linux shell编程学习笔记16:bash中的关联数组

上一节我们探讨了普通的数组&#xff0c;即使用数字下标来索引数组中不同的元素的数组&#xff0c;也可以称之为索引数组。 相比纯粹的数字&#xff0c;字符串不仅能表明含义&#xff0c;也更便于记忆使用&#xff0c;于是就有了关联数组。 一、关联数组概述 bash 从4.0开始支…

力扣第738题 单调递增的数字 c++ 暴力超时 贪心优化

题目 738. 单调递增的数字 中等 相关标签 贪心 数学 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数字呈 单调递增 。 示例 1: 输入: n 1…

精品基于Python的房地产分析平台-可视化大屏

《[含文档PPT源码等]精品基于Python的房地产分析平台的设计与实现-爬虫》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功&#xff01; 软件开发环境及开发工具&#xff1a; 开发语言&#xff1a;python 使用框架&#xff1a;Django 前端…

Java VMTranslator Part I

目录 堆栈运算命令 基本思路 核心代码 Parser Code Writer Main 实验结果&#xff0c;使用SimpleAdd、StackTest进行验证 内存访问命令 基本思路 核心代码 Parser Code Writer Main 实验结果&#xff0c;使用进行验证。对比生成的二进制代码文件。 用Java写一个翻…

程序员为啥要做副业(02)-中指备用金

点击下方“JavaEdge”&#xff0c;选择“设为星标” 第一时间关注技术干货&#xff01; 免责声明~ 任何文章不要过度深思&#xff01; 万事万物都经不起审视&#xff0c;因为世上没有同样的成长环境&#xff0c;也没有同样的认知水平&#xff0c;更「没有适用于所有人的解决方案…

Linux — vim编辑器的操作

目录 1. vim的整体操作2. 命令模式下的常见命令3. 底行模式下的常见命令结语 1. vim的整体操作 我们使用 touch 创建一个文件之后&#xff0c;直接 vim 文件名 就能够进入到vim编辑器中。如果vim 文件名的文件还不存在时&#xff0c;vim会自动创建该文件&#xff0c;但需要保存…

Java 中的 synchronized 同步锁

导致线程安全问题的根本原因在于&#xff0c;存在多个线程同时操作一个共享资源&#xff0c;要想解决这个问题&#xff0c;就需要保证对共享资源访问的独占性&#xff0c;因此人们在Java中提供了synchronized关键字&#xff0c;我们称之为同步锁&#xff0c;它可以保证在同一时…

Spring Cloud之API网关(Gateway)

目录 API网关 好处 解决方案 Gateway 简介 特征 核心概念 Route(路由) Predicate(断言) Filter(过滤器) 工作流程 Route(路由) 路由配置方式 1.yml配置文件路由 2.bean进行配置 3.动态路由 动态路由 Predicate(断言) 特点 常见断言 示例 Filter(过滤器) …

IOC课程整理-19 Spring Environment 抽象

1. 理解 Spring Environment 抽象 2. Spring Environment 接口使用场景 3. Environment 占位符处理 4. 理解条件配置 Spring Profiles 5. Spring 4 重构 Profile 6. 依赖注入 Environment 7. 依赖查找 Environment 8. 依赖注入 Value 9. Spring 类型转换在 Environment 中的运用…

ZYNQ连载01-ZYNQ介绍

ZYNQ连载01-ZYNQ介绍 1. ZYNQ 参考文档&#xff1a;《ug585-zynq-7000-trm.pdf》 ZYNQ分为PS和PL两大部分&#xff0c;PS即ARM&#xff0c;PL即FPGA&#xff0c;PL作为PS的外设。 2. 方案 ZYNQ7020为双核A9架构&#xff0c;多核处理器常用的运行模式为AMP(非对称多处理)和…

测试C#调用Vlc.DotNet组件播放视频

除了Windows Media Player组件&#xff0c;在百度上搜索到还有不少文章介绍采用Vlc.DotNet组件播放视频&#xff0c;关于Vlc.DotNet的详细介绍见参考文献1&#xff0c;本文学习Vlc.DotNet的基本用法。   VS2022中新建基于.net core的winform程序&#xff0c;在Nuget包管理器中…

[论文精读]How Powerful are Graph Neural Networks?

论文原文&#xff1a;[1810.00826] How Powerful are Graph Neural Networks? (arxiv.org) 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#x…

脚本木马编写

PHP小马编写 小马用waf扫描&#xff0c;没扫描出来有风险。 小马过waf之后用echo $_SERVER[DOCUMENT_ROOT]获得当前运行脚本所在的文档根目录。&#xff0c;然后在上传大马工具。 $_SERVER&#xff0c;参考&#xff1a;PHP $_SERVER详解 小马编写二次加密 现在是可以被安全…

辅助驾驶功能开发-功能规范篇(22)-4-L2级辅助驾驶方案功能规范

1.3.4 LDW系统功能定义 1.3.4.1 状态机 1.3.4.2 功能定义 1.3.4.2.1 信号需求列表 1.3.4.2.2 系统开启关闭 1)初始化 车辆上电后,车道偏离预警系统(LDW)进行初始化,控制器需要在上电后 220ms 内发出第一帧报文,并在 3s 内 完成内部自检,同时上电 3s 内不进行关联系统…

ProEssentials pro v9 历史更新列表--注册版

ProEssentials标准版和专业版之间的唯一区别是可以渲染的数据点和注释的数量。标准版与专业版一样拥有所有的功能和接口。所有版本包括WPF、WinForm、WebForm、ActiveX、VCL和DLL接口。标准版仅限于8000个数据点和800个图表注释。此限制适用于每个控件实例。你可以运行多个控件…

H5游戏源码分享-像素小鸟游戏(类似深海潜艇)

H5游戏源码分享-像素小鸟游戏&#xff08;类似深海潜艇&#xff09; 点击屏幕控制小鸟的飞行高度 整个小游戏就用JS完成 项目地址&#xff1a;https://download.csdn.net/download/Highning0007/88483228 <!DOCTYPE HTML> <html><head><meta http-equiv…