机器学习-特征选择:如何使用互信息特征选择挑选出最佳特征?

一、引言

特征选择在机器学习中扮演着至关重要的角色,它可以帮助我们从大量的特征中挑选出对目标变量具有最大预测能力的特征。互信息特征选择是一种常用的特征选择方法,它通过计算特征与目标变量之间的互信息来评估特征的重要性。

互信息是信息论中的一个概念,用于衡量两个随机变量之间的相互依赖程度。在特征选择中,互信息可以用来衡量特征与目标变量之间的相关性。通过计算特征与目标变量之间的互信息,我们可以得到每个特征对目标变量的贡献程度,进而选择最相关的特征。

本文旨在介绍互信息特征选择的方法和应用。首先,我们将详细解释互信息的概念和计算方法,并阐述特征选择的步骤和原理。然后,我们将展示使用互信息特征选择在实际数据集上挑选出的最佳特征。接下来,我们将对每个最佳特征进行分析和解释,探讨其对目标变量的重要性。随后,我们将使用挑选出的最佳特征训练机器学习模型,并评估模型的性能。最后,我们将总结互信息特征选择的效果和对研究问题的贡献。

二、户信息特征选择简介

2.1 互信息的概念和计算方法

「互信息」是信息论中衡量两个随机变量之间相互依赖程度的指标。它可以用来评估特征与目标变量之间的相关性。互信息的计算方法基于信息熵的概念,它衡量了两个随机变量联合分布与各自边缘分布之间的差异。

在特征选择中,我们需要计算每个特征与目标变量之间的互信息。互信息的计算可以通过以下公式得到:

I(X; Y) = ∑∑ p(x, y) * log(p(x, y) / (p(x) * p(y)))

其中,X表示特征,Y表示目标变量,p(x, y)表示特征X和目标变量Y的联合概率分布,p(x)和p(y)分别表示特征X和目标变量Y的边缘概率分布。

2.2 特征选择的步骤和原理

  1. 步骤1:计算每个特征与目标变量之间的互信息。对于每个特征X和目标变量Y,使用上述公式计算它们之间的互信息值。
  2. 步骤2:根据互信息值排序特征。将特征按照与目标变量的互信息值从大到小排序,以确定特征的重要性。
  3. 步骤3:选择具有最高互信息值的特征。根据排序结果,选择互信息值最高的特征作为最佳特征。

特征选择的原理是基于互信息值来衡量特征与目标变量之间的相关性。互信息值越大,表示特征对目标变量的贡献越大,具有更强的预测能力。通过选择互信息值最高的特征,我们可以提取出对目标变量最相关的特征,从而提高机器学习模型的性能。

三、实例演示

  • 「数据集准备」
library(survival)
head(gbsg)

结果展示:

   pid age meno size grade nodes pgr er hormon rfstime status
1  132  49    0   18     2     2   0  0      0    1838      0
2 1575  55    1   20     3    16   0  0      0     403      1
3 1140  56    1   40     3     3   0  0      0    1603      0
4  769  45    0   25     3     1   0  4      0     177      0
5  130  65    1   30     2     5   0 36      1    1855      0
6 1642  48    0   52     2    11   0  0      0     842      1
  • 「示例数据集介绍」
> str(gbsg)
'data.frame':   686 obs. of  10 variables:
 $ age    : int  49 55 56 45 65 48 48 37 67 45 ...
 $ meno   : int  0 1 1 0 1 0 0 0 1 0 ...
 $ size   : int  18 20 40 25 30 52 21 20 20 30 ...
 $ grade  : int  2 3 3 3 2 2 3 2 2 2 ...
 $ nodes  : int  2 16 3 1 5 11 8 9 1 1 ...
 $ pgr    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ er     : int  0 0 0 4 36 0 0 0 0 0 ...
 $ hormon : int  0 0 0 0 1 0 0 1 1 0 ...
 $ rfstime: int  1838 403 1603 177 1855 842 293 42 564 1093 ...
 $ status : Factor w/ 2 levels "0","1"1 2 1 1 1 2 2 1 2 2 ...

age:患者年龄
meno:更年期状态(0表示未更年期,1表示已更年期)
size:肿瘤大小
grade:肿瘤分级
nodes:受累淋巴结数量
pgr:孕激素受体表达水平
er:雌激素受体表达水平
hormon:激素治疗(0表示否,1表示是)
rfstime:复发或死亡时间(以天为单位)
status:事件状态(0表示被截尾,1表示事件发生)
  • 「互信息特征选择」
install.packages("FSelector")
library(FSelector)
gbsg <- gbsg[,c(-1)]
# 计算互信息
weights <- information.gain(status ~ ., data = gbsg)
print(weights)
# 这里是截取多少个的意思
subset <- cutoff.k(weights,5)
f <- as.simple.formula(subset, "status")
print(f)

结果展示:

> print(weights)
        attr_importance
age          0.00000000
meno         0.00000000
size         0.00000000
grade        0.05222619
nodes        0.03689316
pgr          0.85827582
er           0.11240936
hormon       0.00000000
rfstime      0.09209408
# 这里是截取多少个的意思
> subset <- cutoff.k(weights,5)
> f <- as.simple.formula(subset, "status")
> print(f)
status ~ pgr + er + rfstime + grade + nodes + age
<environment: 0x0000013cbe019f48>

我这里是把信息通量为0的去除了

  • 「划分训练集和测试集」
# 划分训练集和测试集
set.seed(123)
data <- gbsg
data$meno <- as.factor(data$meno)
data$hormon <- as.factor(data$hormon)
data$grade <- as.factor(data$grade)
train_indices <- sample(x = 1:nrow(data), size = 0.8 * nrow(data), replace = FALSE)
test_indices <- sample(setdiff(1:nrow(data), train_indices), size = 0.2 * nrow(data), replace = FALSE)
train_data <- data[train_indices, ]
test_data <- data[test_indices, ]
  • 「拟合模型并进行比较」
# 未进行特征选择的模型拟合
library(randomForest)
library(pROC)
set.seed(666)
rf <- randomForest(status~., data=train_data)

# 获取模型预测的概率
pred_prob <- predict(rf, newdata = test_data, type = "class")
# 计算真阳性率和假阳性率
roc1 <- pROC::roc(test_data$status, pred_prob)

# 特征选择后的模型拟合
rf_handle <- randomForest(f, data=train_data)
pred_prob_handle <- predict(rf_handle, newdata = test_data, type = "class")
# 计算真阳性率和假阳性率
roc2 <- pROC::roc(test_data$status, pred_prob_handle)

plot(roc1,col="#2E9FDF", legacy.axes = TRUE)
plot.roc(roc2,add=TRUE,col="red")

abline(h = seq(01, by = 0.1), col = "gray", lty = "dotted")
legend(0.400.17,  # 图例位置x,y
       bty = "n",   # 图例样式
       legend=c("UnHandle AUC 0.864","handle AUC 0.868"),  # 添加分组
       col=c("#2E9FDF","red"),  # 颜色跟前面一致
       lwd=2,
    border="black")  # 线条粗

从比较结果可以看出来,特征选择过后模型的表现比不处理的要表现的更好,然后模型的复杂度也会下降很多。

四、结论

「互信息特征选择是一种常用的特征选择方法,它通过计算特征与目标变量之间的互信息值来评估它们之间的相关性。这种方法的效果和对研究问题的贡献可以总结如下:」

  1. 特征选择效果:互信息特征选择可以帮助我们识别与目标变量高度相关的特征,从而提高模型的预测性能。通过计算互信息值,我们可以确定哪些特征对目标变量具有较高的信息增益,从而更好地理解数据中的关键特征。
  2. 对研究问题的贡献:互信息特征选择可以帮助我们理解数据中的关键特征,并且可以在建模过程中减少特征维度。这样可以提高模型的可解释性、降低模型的复杂度,并且可以加快训练和推理的速度。此外,互信息特征选择还可以帮助我们发现潜在的关联特征,从而为进一步的数据分析和挖掘提供线索。

「在改进和未来工作方向方面,以下是一些可能的讨论点:」

  1. 特征选择方法的比较:互信息特征选择是特征选择的一种方法,与其他方法(如方差选择、相关性选择、L1正则化等)相比,它的优势和局限性是什么?可以考虑在不同数据集和问题上进行比较研究,以评估互信息特征选择的性能。
  2. 特征选择的稳定性:特征选择结果的稳定性是一个重要的考虑因素。可以通过使用交叉验证或引入随机性来评估互信息特征选择的稳定性,并探索如何提高其稳定性。
  3. 大规模数据和高维数据的处理:互信息特征选择在大规模和高维数据集上的计算效率如何?是否存在改进方法,以便更好地处理这些数据集?
  4. 结合领域知识的特征选择:除了互信息值,是否可以结合领域知识或先验信息来进行特征选择?这样可以更好地解释特征之间的关系,并提高特征选择的准确性。
  5. 非线性关系的建模:互信息特征选择主要基于特征与目标变量之间的线性关系。如何处理非线性关系,并将其纳入特征选择过程中,是一个值得探索的方向。

总之,互信息特征选择是一种有用的特征选择方法,但仍有改进和深入研究的空间。通过比较不同方法、提高稳定性、处理大规模数据和高维数据、结合领域知识以及处理非线性关系,我们可以进一步提升互信息特征选择的效果,并为更复杂的数据分析和挖掘任务提供更好的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/175260.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序开发——小程序项目的配置与生命周期

1.app.json配置属性 app.json配置属性 2.页面配置 app的页面配置指的是pages属性&#xff0c; pages数组的第一个页面将默认作为小程序的启动页。利用开发工具新建页面时&#xff0c;则pages属性对应的数组将自动添加该页面的路径&#xff0c;若是在硬盘中添加文件的形式则不…

前端打印表格功能+单号生成条形码

第一种打印方法&#xff1a;不需要下载任何插件 浏览器自带打印功能&#xff08;不太推荐&#xff09;&#xff0c;原理是生成新的页面后被打印&#xff0c;当打印完成或者取消打印时&#xff0c;页面需要强制刷新&#xff0c;否则页面无法回显。 //打印功能 print() {var pr…

【Docker】Linux路由连接两个不同网段namespace,连接namespace与主机

如果两个namespace处于不同的子网中&#xff0c;那么就不能通过bridge进行连接了&#xff0c;而是需要通过路由器进行三层转发。然而Linux并未像提供虚拟网桥一样也提供一个虚拟路由器设备&#xff0c;原因是Linux自身就具备有路由器功能。 路由器的工作原理是这样的&#xff…

算法刷题记录6 - 反转链表和链表两两交换

哎&#xff0c;都两周没刷题了&#xff0c;罪过 第一题 2023.10.29 周日 上链接 206. 反转链表 难度&#xff1a;简单 代码随想录 文档 代码随想录 视频 这道题说难不难&#xff0c;但是也不知道是太久没写没感觉了还是确实细节多&#xff0c;不看视频确实感觉不出写的问题在…

边缘计算技术的崭新篇章:赋能未来智能系统

边缘计算是近年来云计算和物联网技术发展的重要趋势。通过将数据处理和分析从云端迁移到设备边缘&#xff0c;边缘计算能够实现更低的延迟和更高的数据安全。本文将探索边缘计算技术的最新进展及其在不同行业中的应用场景。 1. 实时数据处理与决策 在需要快速响应的场景中&…

理解android AIDL

理解Android AIDL 在研究了 Android Frameworks 中进程间通信&#xff08;IPC&#xff09;相关的一些程序后&#xff0c;了解到 Android 系统中进程间通信的机制绝大部分就是 Binder&#xff0c;主要表现在系统服务的调用&#xff0c;app进程间功能调用等。而 Android 上实现 …

虚幻C++基础 day1

虚幻C概念 虚幻C类的继承结构 虚幻引擎C类层级结构(Hierarchy) 这些基本类又派生出了很多子类&#xff0c;例&#xff1a; UE中的反射与垃圾回收系统 例如一个创建了一个Actor类&#xff0c;有一个Actor类型指针去指向这个Actor类&#xff0c;如果的指针被销毁了&#xff…

38基于matlab的期货预测,利用PSO优化SVM和未优化的SVM进行对比,得到实际输出和期望输出结果。

基于matlab的期货预测&#xff0c;利用PSO优化SVM和未优化的SVM进行对比&#xff0c;得到实际输出和期望输出结果。线性核函数、多项式、RBF核函数三种核函数任意可选&#xff0c;并给出均方根误差&#xff0c;相对误差等结果&#xff0c;程序已调通&#xff0c;可直接运行。 3…

谈API接入必须了解的各大API调用电商API应用场景

哪些业务场景可以使用API接口&#xff1f; &#xff08;1&#xff09;爬虫业务&#xff1a;在爬虫业务中&#xff0c;使用API接口可以帮助解决IP限制、反爬虫策略等问题&#xff0c;提高爬取数据的效率和稳定性。 &#xff08;2&#xff09;网络安全&#xff1a;在网络安全领…

虚拟化、容器与Docker基本介绍以及安装部署(Docker 基本管理)

虚拟化、容器与Docker基本介绍以及安装部署&#xff08;Docker 基本管理&#xff09; 1、Docker 概述1.1Docker与虚拟机的区别1.2容器在内核中支持2种重要技术&#xff1a;1.3Docker核心概念 2、安装docker服务docker安装步骤详解 3、 网络优化4、docker基本命令4.1查看镜像——…

代码随想录算法训练营第三十九天丨 动态规划part02

62.不同路径 思路 动态规划 机器人从(0 , 0) 位置出发&#xff0c;到(m - 1, n - 1)终点。 按照动规五部曲来分析&#xff1a; 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i][j] &#xff1a;表示从&#xff08;0 &#xff0c;0&#xff09;出发&#…

荣电集团与钕希科技签署全面战略合作

10月26日&#xff0c;荣电集团&#xff08;以下简称荣电&#xff09;与钕希科技南京有限公司&#xff08;以下简称钕希科技&#xff09;今天在合肥市签署全面战略合作协议&#xff0c;联合进军混合现实&#xff08;Mixed Reality&#xff0c;以下简称MR&#xff09;空间计算高科…

leetcode-字符串

1.反转字符串LeetCode344. 20230911 难度为0&#xff0c;此处就不放代码了 注意reverse和swap等一系列字符串函数什么时候该用&#xff0c;记一记库函数 swap可以有两种实现&#xff0c;涨知识了&#xff0c;除了temp存值还可以通过位运算&#xff1a;s[i] ^ s[j]; s[j] ^ s[i…

【c++|opencv】二、灰度变换和空间滤波---1.灰度变换、对数变换、伽马变换

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 灰度变换、对数变换、伽马变换 1. 灰度变换 #include <iostream> #include <opencv2/opencv.hpp>using namespace std; using namespace c…

03_Flutter自定义下拉菜单

03_Flutter自定义下拉菜单 在Flutter的内置api中&#xff0c;可以使用showMenu实现类似下拉菜单的效果&#xff0c;或者使用PopupMenuButton组件&#xff0c;PopupMenuButton内部也是使用了showMenu这个api&#xff0c;但是使用showMenu时&#xff0c;下拉面板的显示已经被约定…

Redis(10)| I/O多路复用(mutiplexing)

上文select/epoll 在上文《Redis&#xff08;09&#xff09;| Reactor模式》 思考问题可以使用I/O多路复用技术解决多多客户端TCP连接问题&#xff0c;同时也提到为了解决最早期的UNIX系统select调用存在的四个问题。 select(int nfds, fd_set *r, fd_set *w, fd_set *e, stru…

动手学深度学习——第七次学

LeNet&#xff08;LeNet-5&#xff09;由两个部分组成&#xff1a; 卷积编码器和全连接层密集块 卷积把高宽不断变小&#xff0c;把通道数逐渐增多&#xff0c;&#xff08;最后高宽会变成&#xff0c;通道会变得很大&#xff0c;然后做全连接进行输出&#xff09;通道信息可以…

7+共病思路。WGCNA+多机器学习+实验简单验证,易操作

今天给同学们分享一篇共病WGCNA多机器学习实验的生信文章“Shared diagnostic genes and potential mechanism between PCOS and recurrent implantation failure revealed by integrated transcriptomic analysis and machine learning”&#xff0c;这篇文章于2023年5月16日发…

人到中年应该怎么交朋友

听人劝、吃饱饭,奉劝各位小伙伴,不要订阅该文所属专栏。 作者:不渴望力量的哈士奇(哈哥),十余年工作经验, 跨域学习者,从事过全栈研发、产品经理等工作,现任研发部门 CTO 。荣誉:2022年度博客之星Top4、博客专家认证、全栈领域优质创作者、新星计划导师,“星荐官共赢计…

虚拟机克隆

linux系统的组成&#xff1b; 主根目录和根目录; 所有的根目录都包含在主根目录中&#xff1b; 根目录&#xff1a; /root /home/xxx,yyy,zzz;主根目录&#xff1b;/ 一个重要的子目录&#xff1a;etc passwd, 保存了所有的三类用户信息&#xff1b;bashrc, 可以设置别名 及…