毕业论文问卷分析思路

很多同学会通过收集问卷的方式获取论文研究需要的数据,但是收集到的问卷应该如何分析呢?问卷一般可以分为两类:非量表类与量表类问卷。不同类型的问卷有不同的分析思路,今天和大家探讨一下拿到一份问卷后,一般的分析思路是怎样的。

一、量表问卷分析思路

SPSSAU提供以下五类量表数据分析思路供参考。分别是量表类问卷影响关系研究、量表类问卷中介调效应和调节效应研究、量表类问卷权重研究、“类实验”类问卷差异研究、聚类样本类问卷研究

1、量表类问卷影响关系研究

影响关系研究十分常见,其核心问题是探究不同变量之间的相互影响和关系。通常可以使用相关分析研究变量之间的关系情况,如研究变量之间是否存在关系、关系紧密程度如何等,然后使用回归模型研究变量之间的回归影响关系情况。
量表类问卷影响关系研究分析思路如下:

1.1样本背景分析

首先对收集数据进行基本的频数分析,比如统计性别,年龄、月收入水平,职业的分布情况如何等。SPSSAU频数分析结果如下:

此部分的分析应先描述样本量,然后分别对样本背景信息进行描述,尤其是对重要信息点进行说明。

举例说明:本次调查共有299份问卷,其中参与调查的女性占比71.237%;20岁以下人群占比最高45.667%;月收入2000元以下人群占比最高为36.667%;学生人群占比最高为46.667%。

1.2 样本特征、行为分析

在对研究样本背景信息进行统计、描述后,要进一步对研究样本的基本态度、特征、行为等方面进行分析

比如分析问卷中与样本基本态度有关的问题:“你为什么学习外语?”,“你有多长在线学习语言的经验?”,“你购买过多少门课程?”。这3个题均为单选题,因此分别统计频数选择情况(参考下图)。在进行报告时,首先应该关注选择比例较高的选项,突出重点

1.3指标归类分析——探索性因子分析

影响关系研究时,问卷中通常会涉及非常多的量表题,如果量表题具体应该分成多少个维度,并不完全确定,此时可使用因子分析进行浓缩,得出几个维度(因子),并且找到维度与题项的对应关系情况。


1.4 信度分析

信度分析的目的在于研究样本数据是否真实可靠,通俗来讲就是研究受访者是否真实地回答了各个题。如果受访者没有真实回答,则信度不达标。信度仅针对量表题进行研究,无法针对比如性别,年龄之类的背景信息项进行分析。信度可分为以下5类,其中克隆巴赫α信度系数最为常用:


1.5 效度分析——探索性因子分析、验证性因子分析

效度分析的目的在于判断研究题是否可以有效地测量研究人员需要测量的变量,通俗来讲就是测量问卷题是否准确有效。当信度分析不达标时,效度分析必然也不能达标。效度仅针对量表题进行研究。效度可分为以下4类:



1.6 研究变量描述分析
研究变量描述分析的目的在于研究样本对变量的整体态度情况。在研究变量描述分析时,需要将反向题进行反向处理(习惯上的处理方式是分值越大越满意)。例如,当1分代表“非常同意”,5分代表“非常不同意时”,就需要将其反向处理为5分代表“非常同意”,1分代表“非常不同意”。通过计算变量的平均值或中位数进行分析,或者用折线图形式展示变量的平均值排序情况等
SPSSAU描述分析结果如下:


1.7 变量相关关系分析——相关分析通过相关分析研究变量之间的关系情况,包括是否有关系和关系紧密程度。通常一个变量由多个题表示,因此在进行相关分析之前需要计算出多个题的平均值用于代表对应变量(SPSSAU生成变量—平均值进行处理)。

1.8 研究假设检验分析——回归分析

在数据有着相关的前提之下,再研究回归影响关系才具有意义。因而回归分析需要放在相关分析之后,并且通常情况下需要使用回归分析去验证假设。如果因变量为定量数据,那么可以使用线性回归分析或SEM结构方程模型进行假设验证;如果因变量为定类数据,那么使用logistic回归分析进行假设验证

1.9 差异分析——方差分析、t检验、卡方分析差异分析的目的在于挖掘出更多有价值的研究结论,如男性和女性样本对研究变量是否有差异性态度。差异分析通常有3种分析方法,分别是方差分析、t检验及卡方分析。量表类问卷通常使用方差分析和t检验较多,非量表一般使用卡方分析较多。

2、量表类问卷中介效应和调节效应研究

在量表类问卷研究中,中介效应和调节效应研究也较为常见,中介效应和调节效应研究是影响关系研究的延伸,这两种研究多用于学术研究,基余部分与“影响关系研究”基本类似。
量表类问卷中介效应和调节效应研究思路如下:

重叠部分不再赘述,补充新增部分说明如下。

2.8.1 中介效应

中介效应是研究X对Y的影响时,是否会先通过中介变量M,再去影响Y;即是否有X->M->Y这样的关系;比如工作满意度(X)会影响到创新氛围(M),再影响最终工作绩效(Y)。

2.8.2 调节效应

调节效应是研究X对Y的影响时,是否会受到调节变量Z的干扰;比如开车速度(X)会对车祸可能性(Y)产生影响,这种影响关系受到是否喝酒(Z)的干扰,即喝酒时的影响幅度,与不喝酒时的影响幅度 是否有着明显的不一样。

3、量表类问卷权重研究

量表类问卷权重研究的重心在于各个指标的权重得分,而非影响关系,通过计算各个指标或题的权重得分,构建完善的权重体系,并且结合各指标权重情况提出科学的建议。
量表类问卷权重研究分析思路如下:

3.6 权重体系研究

指标的权重是指各级指标在整个评价体系中相对重要程度和价值高低的所占比例的量化值,每个指标的权重值将被记为0—1之间的小数,将1作为整个指标体系的权重之和。

4、“类实验”类问卷差异研究

“类实验”类问卷是指带有实验式背景的问卷。“类实验”式问卷通常以研究差异关系作为核心内容,一般使用单因素方差分析、多因素方差分析、t检验等方法进行研究。
“类实验”类问卷差异研究分析思路:

4.5 交互作用研究

交互作用研究是指研究多个分类自变量X对因变量Y(Y为定量数据)的影响,即研究多个分类自变量X分别在不同水平时,对Y的影响幅度的差异。例如现在想要研究不同施肥方式和不同品种水稻之间产量是否有差异,以及施肥方式和品种的交互作用对水稻产量是否有影响。类似上述说明的研究即为交互作用研究。

5、聚类样本类问卷研究

聚类样本研究时,第一想到的应该是样本“分类”,即样本人群应该分成几个类别;分了类别之后,通常肯定是需要对比不同类别人群的差异性,比如不同类别群体在态度,行为上的差异性等。
聚类样本类问卷研究分析思路如下:


5.6 聚类分析

聚类分析可以对样本进行聚类分析(Q型聚类),也可以对变量进行聚类分析(R型聚类)。聚类分析分类如下:

5.7 聚类效果验证

聚类效果验证不同于其他分析方法,其他分析方法可以通过p值进行检验,聚类效果验证则需要一定的研究经验,并且结合专业知识进行综合判断。良好的聚类效果可以有效识别样本特征,聚类样本的特征差异对比通常使用方差分析进行,有时也可以通过判别分析判断聚类效果。

二、非量表问卷分析思路

在通常情况下,非量表类问卷是针对某个话题进行现状分析,并且了解样本的基本态度情况,研究不同类别样本的现状或态度差异,然后结合分析结论提供有意义的建议措施等。

非量表问卷分析思路框架如下图所示:

与量表问卷分析思路重叠部分不在进行赘述,补充新增部分。

3、基本现状分析

充分了解样本现状情况,以及样本的态度情况,结合结果可以对不同群体的态度差异情况、现状差异情况进行分析,或者进一步研究影响关系。
在进行研究时,不应该拘泥于分析方法的使用,此部分更多会使用简单易懂的频数和百分比描述,最好结合各种图形展示,比如多选题可以使用条形图,单选题可以使用柱形图展示等。


举例说明:比如对多选题“影响购买课程的因素”进行分析,SPSSAU多选题分析结果如下:

在文字分析过程中,研究人员需要更多关注选择比例较高选项。从分析结果可以看出,“教学质量”和“课程内容”这两项的选择比例明显高于其他各项,“优惠折扣”和“其他”的选择比例相对少很多。

4、样本态度分析


如果问卷中涉及样本的认知态度相关问题,可使用频数分析或多选题分析进行汇总,进一步了解清楚样本特征情况(分析参照以上过程)。

5、差异分析


在上一部分打好基础后,就可以开始比较差异了。可以分析不同样本人群在题项上的态度差异,也或者不同人群在基本现状题项上的差异情况进行差异对比分析
研究方法上看,针对非量表类题项关系研究,即分类与分类数据之间的关系研究,应该使用卡方分析


举例说明:研究不同职业为什么学习英语的差异?SPSSAU卡方分析结果如下:

从卡方分析结果可以知道,不同职业人群学习英语的原因存在显著差异(chi=114.089, p=0.000<0.01),具体差异可通过对比括号内百分比进行分析,或者查看下方堆积柱状图进行直观对比。

从上图可以直观看出,学生人群学习外语主要为了考试(占比46.43%),公司职员主要为了提升工作技能(占比38.71%)等等,在此不再进行赘述。

6、影响关系分析

接下来,可以研究某种因素对样本态度的影响关系。当因变量Y为定类数据时,应该使用logistic回归分析进行影响关系研究。logistic回归分析有以下三类,说明如下:

举例说明:你要研究哪些因素会对因变量—“你是否愿意将课程分享给其他人?”产生影响。此时因变量为二分类变量,所以应该使用二元logistic回归分析进行研究。

7、其他

如果问卷中含有定量变量存储的数据,如身高、体重等,可以进行相关分析研究。或者使用方差分析或t检验进行差异性分析等。

  • 非量表问卷分析思路核心

此类研究框架的核心在于“分组”

  • 第一件事情为“分组”,也就是给每个题分组,比如问卷有30个题,那这30题可以被归纳为几个方面呢?比如基本背景,认知,态度,行为,原因等五个方面。
  • 第二件事情是将“分组”分别作为一个部分进行分析,比如上面提到的样本基本背景,就可以用频数分析来统计分析数据。
  • 第三件事情是分组题项与分组题项之间进行交叉。比如基本背景分别与“认知”,“态度”,“行为”,“原因”上的差异性。通常是使用交叉分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/175751.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

7.多线程之单例模式

单例模式 文章目录 单例模式1. 什么是单例模式2. 饿汉模式3. 懒汉模式3.1 单线程版&#xff1a;3.2 多线程版 1. 什么是单例模式 单例模式是一种设计模式&#xff0c;常见的设计模式还有工厂模式、建造者模式等。 设计模式是一套被反复使用、多数人知晓的、经过分类编目的、代码…

Fourier分析导论——第2章——Fourier级数的基本属性(E.M. Stein R. Shakarchi)

第 2 章 Fourier级数的基本属性(Basic Properties of Fourier Series) Nearly fifty years had passed without any progress on the question of analytic representation of an arbitrary function, when an assertion of Fourier threw new light on the subject. Thus…

(四)库存超卖案例实战——优化redis分布式锁

前言 在上一节内容中&#xff0c;我们已经实现了使用redis分布式锁解决商品“超卖”的问题&#xff0c;本节内容是对redis分布式锁的优化。在上一节的redis分布式锁中&#xff0c;我们的锁有俩个可以优化的问题。第一&#xff0c;锁需要实现可重入&#xff0c;同一个线程不用重…

Hydra(九头蛇海德拉)教程

Hydra 参数 hydra <参数> <IP地址> <服务名> 参数案例说明-l-l root登录账号-L-L userName.txt用户文件-p-l 123456登录密码-P-P passwd.txt密码文件-e-e nsrn 空密码 s 用户名即密码 r 用户名和密码相反&#xff08;如root的密码为toor&#xff09;-s-s 21指…

openGauss学习笔记-111 openGauss 数据库管理-管理用户及权限-用户权限设置

文章目录 openGauss学习笔记-111 openGauss 数据库管理-管理用户及权限-用户权限设置111.1 给用户直接授予某对象的权限111.2 给用户指定角色111.3 回收用户权限 openGauss学习笔记-111 openGauss 数据库管理-管理用户及权限-用户权限设置 111.1 给用户直接授予某对象的权限 …

【腾讯云 TDSQL-C Serverless 产品体验】TDSQL-C MySQL Serverless最佳实践

一、引言&#xff1a; 随着云计算技术的不断发展&#xff0c;越来越多的企业开始选择将自己的数据库部署在云上&#xff0c;以更好了的支持企业数字化转型以及业务创新&#xff0c;在这个过程中&#xff0c;很多客户会遇到这样一个问题&#xff0c;业务会存在高峰期和低谷期&a…

逻辑(css3)_强制不换行

需求 如上图做一个跑马灯数据&#xff0c;时间、地点、姓名、提示文本字数都不是固定的。 逻辑思想 个人想法是给四个文本均设置宽度&#xff0c;不然会出现不能左对齐的现象。 此时四个文本均左对齐&#xff0c; 垂直排列样式也比较好看&#xff0c;但是出现一个缺点&#…

LeetCode——哈希表(Java)

哈希表 简介[简单] 242. 有效的字母异位词[简单] 349. 两个数组的交集[简单] 202. 快乐数[简单] 1. 两数之和[中等] 454. 四数相加 II[简单] 383. 赎金信[中等]15. 三数之和 简介 记录一下自己刷题的历程以及代码。写题过程中参考了 代码随想录。会附上一些个人的思路&#xf…

前端技术知识(含八股)总结 - 持续更新中

前端技术知识&#xff08;含八股&#xff09;总结 - 持续更新中 参考文献1.HTML和CSS1.1 语义化标签1.2 CSS 选择器及优先级 / position 定位 / box-sizing 属性 / transition / 继承属性&#xff08;如字体文字类的属性大部分有继承&#xff09;/ 行内元素和块级元素 / html的…

0基础学习PyFlink——用户自定义函数之UDAF

大纲 UDAF入参并非表中一行&#xff08;Row&#xff09;的集合计算每个人考了几门课计算每门课有几个人考试计算每个人的平均分计算每课的平均分计算每个人的最高分和最低分 入参是表中一行&#xff08;Row&#xff09;的集合计算每个人的最高分、最低分以及所属的课程计算每课…

SpringBoot整合阿里云OSS对象存储

文章目录 1、OSS介绍及开通1.1、阿里云OSS简介1.2、开通OSS 2、创建存储空间bucket及密钥获取2.1、创建存储空间2.2、获取密钥 3、OSS快速入门案例4、在springboot项目中整合4.1、将oss配置放到yml文件中4.2、创建Oss属性类&#xff0c;接收yml文件中的属性4.3、封装文件上传功…

SpringBoot集成xxl-job实现超牛的定时任务

XXL-JOB是一个分布式任务调度平台&#xff0c;其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线&#xff0c;开箱即用。 ———官网 开始介绍xxl-job的使用前我们先认识一下它的作者&#xff1a;Xuxueli&#xff08;许雪里 &#…

Linux进程程序替换

一、单进程下的程序替换 使用execl进行程序替换&#xff0c;先执行execl前面的代码&#xff0c;在execl处替换成其它进程的代码和数据继续执行&#xff0c;后面的内容就不执行了&#xff0c;因此只打印before 二、程序替换原理 前面我们fork创建子进程&#xff0c;子进程会继承…

一文弄懂Linux信号机制

目录 1.什么是信号&#xff1f; 2.信号实现原理 ​3.信号生命周期 4.信号分类 5.信号常见概念 6.信号阻塞和信号忽略的区别&#xff1f; 1.什么是信号&#xff1f; Linux信号机制是进程间通信的一种方式&#xff0c;用于在不同进程之间传递信息。它通过向目标进程发送一…

SQL Server Management Studio (SSMS)的安装教程

文章目录 SQL Server Management Studio (SSMS)的安装教程从Microsoft官网下载SQL Server Management Studio安装程序。选中安装程序右键并选择“以管理员的身份运行”选项选择安装目录&#xff0c;单击“安装”按钮开始安装过程安装成功界面安装完成后&#xff0c;您可以启动S…

微信小程序 - 页面继承(非完美解决方案)

微信小程序 - 面页继承&#xff08;非完美解决方案&#xff09; 废话思路首页 indexindex.jsindex.jsonindex.wxml 父页面 page-basepage-base.jspage-base.wxml 子页面 page-apage-a.jspage-a.wxml 子页面 page-bpage-b.jspage-b.wxml 其它app.jsapp.jsonapp.wxss 参考资料 废…

QT通过url下载http地址下的文件(文件夹)

前言 之前只写过通过http协议通信&#xff0c;没有写过下载http地址中的文件或者文件夹&#xff0c;了解一下在QT下如何下载。 其实很简单&#xff0c;同使用协议通信相同的是&#xff0c;创建QNetworkAccessManager和QNetworkRequest&#xff0c;设置QNetworkRequest的url&a…

地球系统模式(CESM)详解

目前通用地球系统模式&#xff08;Community Earth System Model&#xff0c;CESM&#xff09;在研究地球的过去、现在和未来的气候状况中具有越来越普遍的应用。CESM由美国NCAR于2010年07月推出以来&#xff0c;一直受到气候学界的密切关注。近年升级的CESM2.0在大气、陆地、海…

[ poi-表格导出 ] java.lang.NoClassDefFoundError: org/apache/poi/POIXMLTypeLoader

解决报错&#xff1a; org.springframework.web.util.NestedServletException: Handler dispatch failed; nested exception is java.lang.NoClassDefFoundError: org/apache/poi/POIXMLTypeLoader 报错描述&#xff1a; 表格导出本来使用正常&#xff0c;偶然就报了以上错误…

一个方法,教你快速监测蓄电池!

随着电力需求的不断增长和可再生能源的快速发展&#xff0c;蓄电池技术已经成为能源存储领域的重要组成部分。 蓄电池不仅在家庭和工业应用中发挥着重要作用&#xff0c;还在电网稳定性和可持续能源集成方面具有关键地位。然而&#xff0c;蓄电池的有效监控和管理对于确保其可靠…