【机器学习】二、决策树

目录

一、决策树定义:

二、决策树特征选择

2.1 特征选择问题

 2.2 信息增益

2.2.1 熵

2.2.2 信息增益

三、决策树的生成

 3.1 ID3算法

3.1.1理论推导

3.1.2代码实现

 3.2 C4.5 算法

3.2.1理论推导

​ 3.2.2代码实现

四、决策树的剪枝

4.1 原理

4.2 算法思路:

五、CART算法

5.1 CART生成

5.1.1 回归树的生成

5.1.2 分类树的生成

 比较:

5.1.3 CART生成算法

5.2 CART剪枝

 六、代码

6.1 代码

6.2 结果


一、决策树定义:

分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。

结点有两种类型:内部结点(internal node)和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类。

⚪:内部结点

正方形:叶结点

二、决策树特征选择

2.1 特征选择问题

特征选择在于选取对训练数据具有分类能力的特征。这样可以提高决策树学习的效率。如果用一个特征去分类,得到的结果与随机的分类没有很大差别,那么这次分类是无意义的。因此,我们要选取有意义的特征进行分类。

举个例子吧~

 如上述表格所示,决定买房子要不要贷款的因素有年龄、有无工作、有无房子、信贷情况四个因素。那么如何选取合适的特征因素呢?

特征选择就是决定用哪个特征来划分特征空间。

       直观上来讲,如果一个特征具有更好的分类能力,或者说,按照各以特征将训练数据集分割成子集,使得各个子集在当前条件下有最好的分类,那么就应该选择这一特征。  

信息增益(information gain)就能够很好的表示这一直观准则。

 2.2 信息增益

2.2.1 熵

在统计学中,熵是表示随机变量不确定性的度量。

设X是一个取有限个值的离散随机变量,其概率分布为

 则随机变量X的熵定义为:

其中如果pi =  0,则0log0 = 0.

单位为bit或者nat。

上只依赖于X的分布,而与X的取值无关,所以也可将X的熵记作H(p)。

熵越大,随机变量的不确定性越大,从定义可以验证:

 

 信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。

2.2.2 信息增益

 

 选择方法:

 计算方法:

输入:训练数据集D和特征值A:

输出:特征A队训练数据集D的信息增益g(D,A),

step1:计算数据集D的经验熵H(D):

step2:计算特征A对数据集D的经验条件熵H(D|A):

step3:计算信息增益:

 举个栗子吧~:

用上面的表,计算每个特征的信息增益!!!!

 所以A3的信息增益值最大,选择A3做最优特征。

三、决策树的生成

 3.1 ID3算法

ID3算法的核心是在决策树上各个结点上应用信息增益准则选择特征,递归地构建决策树。

3.1.1理论推导

对上表用ID3算法建立决策树:

 

3.1.2代码实现

https://blog.csdn.net/colourful_sky/article/details/82056125

 3.2 C4.5 算法

       C4.5算法与ID3类似,C4.5算法对ID3算法进行了改进,C4.5在生产的过程中,用信息增益比来选择特征。

3.2.1理论推导
 3.2.2代码实现

https://www.cnblogs.com/wsine/p/5180315.html

四、决策树的剪枝

4.1 原理

      决策树生成算法递归地产生决策树,直到不能继续下去为止。这样产生的结果容易出现过拟合现象。因为这样生成的决策树过于复杂,所以我们需要对决策树进行简化——剪枝。

剪枝:在决策树学习中将已生成的树进行简化的过程。

本次介绍损失函数最小原则进行剪枝,即用正则化的极大似然估计进行模型选择。

公式这里参考李航老师的书:

 

4.2 算法思路:

五、CART算法

     分类与回归树模型(CART, classification and regression tree)是应用广泛的决策树学习方法。

CART由特征选择、树的生成及剪枝组成,既可以用于回归也可以用于分类

5.1 CART生成

step1:决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大。

step2:决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时用损失函数最小作为剪枝的标准。

5.1.1 回归树的生成

回归树用平方误差最小化准则,选择特征,生成二叉树。

 

5.1.2 分类树的生成

分类树用基尼指数最小化准则,选择特征,生成二叉树。

 比较:

5.1.3 CART生成算法

原理:

 例子:

还是用上面的的表格吧

step1:计算各个特征的基尼指数,选择最有特征以及其最优切分点。

step2:选择基尼指数最小的特征及其对应的切分点 

5.2 CART剪枝

 六、代码

sklearn中决策树都在‘tree’这个模块中,这个模块总共包含五类:

tree.DecisionTreeClassifier 分类树
tree.DecisionTreeRegressor 回归树
tree.export_graphviz 画图专用
tree.ExtraTreeClassifier 高随机版本的分类树
tree.ExtraTreeRegressor 高随机版本的回归树

这里用分类树举例子

6.1 代码

  1. #数据准备
  2. from sklearn.datasets import load_breast_cancer
  3. breast_cancer = load_breast_cancer()
  4. #分离数据
  5. breast_cancer
  6. x=breast_cancer.data
  7. y=breast_cancer.target
  8. #训练数据
  9. from sklearn.model_selection import train_test_split
  10. x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=33,test_size=0.3)
  11. #数据标准化
  12. from sklearn.preprocessing import StandardScaler
  13. breast_cancer_ss = StandardScaler()
  14. x_train = breast_cancer_ss.fit_transform(x_train)
  15. x_test = breast_cancer_ss.transform(x_test)
  16. #分类树
  17. from sklearn.tree import DecisionTreeClassifier
  18. dtc = DecisionTreeClassifier()
  19. dtc.fit(x_train,y_train)
  20. dtc_y_predict = dtc.predict(x_test)
  21. from sklearn.metrics import classification_report
  22. k=0
  23. j=0
  24. for i in y_test:
  25. if i!=dtc_y_predict[j]:
  26. k=k+1
  27. j=j+1
  28. print(k)
  29. print('预测结果:\n:',dtc_y_predict)
  30. print('真是结果:\n:',y_test)
  31. print('Accuracy:',dtc.score(x_test,y_test))
  32. print(classification_report(y_test,dtc_y_predict,target_names=['benign','malignant']))

6.2 结果

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/177498.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css position属性与js滚动

“视口”就是浏览器窗口中实际显示文档内容的区域,不包含浏览器的“外框”,如菜单、工具条和标签。文档则是指整个网页。 1 css 的position static 正常定位,是元素position属性的默认值,元素遵循常规流。 relative 相对定位&…

如何卸载干净 IDEA(图文讲解)windows和Mac教程

大家好,我是sun~ 很多小伙伴会问 Windows / Mac 系统上要怎么彻底卸载 IDEA 呢? 本文通过图片文字,详细讲解具体步骤: 如何卸载干净 IDEA(图文讲解) Windows1、卸载 IDEA 程序2、注册表清理3、残留清理 M…

云安全-云原生基于容器漏洞的逃逸自动化手法(CDK check)

0x00 docker逃逸的方法种类 1、不安全的配置: 容器危险挂载(挂载procfs,Scoket) 特权模式启动的提权(privileged) 2、docker容器自身的漏洞 3、linux系统内核漏洞 这里参考Twiki的云安全博客,下…

查询平均提速 700%,奇安信基于 Apache Doris 升级日志安全分析系统

本文导读: 数智时代的到来使网络安全成为了不可忽视的重要领域。奇安信作为一家领先的网络安全解决方案领军者,致力于为企业提供先进全面的网络安全保护,其日志分析系统在网络安全中发挥着关键作用,通过对运行日志数据的深入分析…

Go的命令行工具开发:使用Cobra库

今天我们将深入探讨如何使用Go语言和Cobra库来开发命令行工具。 命令行工具在软件开发中有着广泛的应用,它们快速、高效,且易于自动化。 Go语言因其简洁、高效而被广泛用于命令行工具的开发。Cobra库则是Go中用于构建命令行工具的重要库之一。 为什么选…

C/C++ sizeof

介绍 sizeof 是一个关键字、操作符,也是一个编译时运算符 作用:返回一个对象或者类型所占的内存字节数 使用方法 sizeof(type_name);//sizeof(类型) sizeof(object);//sizeof(对象) 注意: sizeof 操作符不能用于函数类型,不…

MyBatis-Plus返回getOne返回null疑惑

getOne返回null 问题描述分析过程总结 问题描述 在数据库建了一张表主要包括两个字段master_id和slave_id;主要的额外字段max_lots 默认值是null; 当调用getOne进行查询结果是null,但实际情况是数据库时应该返回值的; AotfxMasterSlave ex…

【Unity】Addressables资源管理笔记

【Unity】Addressables资源管理笔记 Addressables是一种用于管理资源的系统。允许以一种灵活的方式加载、卸载和管理资源,无论是场景、预制件、材质、纹理、音频剪辑等。 一、快速实现 安装Addressables插件 把对象添加到组 1)打开AddressablesGroups面…

接口测试 —— Jmeter 之测试片段的应用

一、什么是测试片段? 控制器上一种特殊的线程组,它与线程组处于一个层级。与线程组不同的就是:测试片段不会执行。它是一个模块控制器或者被控制器应用时才会被执行。通常与Include Controller或模块控制器一起使用。 1.1 那它有啥作用&…

在excel中如何打出上标、下标

例如,想把A2的2变为下标。 在单元中输入内容: 选中2: 右键单击,然后点击“设置单元格格式”: 在特殊效果的下面勾选“下标”,然后点击下面的“确定”按钮: 就将2变为下标了:…

2021-arxiv-LoRA Low-Rank Adaptation of Large Language Models

2021-arxiv-LoRA Low-Rank Adaptation of Large Language Models Paper: https://arxiv.org/abs/2106.09685 Code: https://github.com/microsoft/LoRA 大型语言模型的LoRA低秩自适应 自然语言处理的一个重要范式包括对通用领域数据的大规模预训练和对特定任务或领域的适应。…

数据仓库-拉链表

在数据仓库中制作拉链表,可以按照以下步骤进行: 确定需求:首先明确需要使用拉链表的场景和需求。例如,可能需要记录历史数据的变化,以便进行时间序列分析等。设计表结构:在数据仓库中,拉链表通…

LeetCode----84. 柱状图中最大的矩形

题目 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积。 示例 1: 输入:heights = [2,1,5,6,2,3] 输出:10 解释:最大的矩形为图中红色区域,面积为 10 示例 2: 输入: heights =…

基于SSM的理发店管理系统

基于SSM的理发店管理系统的设计与实现~ 开发语言:Java数据库:MySQL技术:SpringSpringMVCMyBatis工具:IDEA/Ecilpse、Navicat、Maven 系统展示 主页 公告信息 管理员界面 用户界面 摘要 基于SSM(Spring、Spring MVC、…

基于springboot漫画动漫网站

基于springbootvue漫画动漫网站 摘要 基于Spring Boot的漫画动漫网站是一个精彩的项目,它结合了现代Web开发技术和漫画爱好者的热情。这个网站的目标是为用户提供一个便捷的平台,让他们能够欣赏各种漫画和动漫作品,与其他爱好者分享他们的兴趣…

mfc140u.dll丢失怎么修复,mfc140u.dll文件有什么作用

今天我想和大家分享的是关于mfc140u.dll文件丢失的解决方法。在我们使用电脑的过程中,有时候会遇到一些错误提示,其中比较常见的就是“无法找到mfc140u.dll文件”。那么,这个文件是什么呢?它有什么作用呢? 首先&#…

模型实际训练笔记2-VGG

1、VGG简介: VGG网络是由牛津大学的视觉几何组(visual geometry group)首次提出来的。 VGG 网络,也称为Visual Geometry Group网络,是计算机视觉领域的一个深度卷积神经网络架构。它于2014年由牛津大学的研究团队开发…

SpringCloud-Alibaba-Nacos2.0.4

SpringCloud-Alibaba-Nacos2.0.4 SpringCloud Alibaba版本选择(截止到2023年3月12日) Spring Cloud Alibaba VersionSpring Cloud VersionSpring Boot Version2021.0.4.0*Spring Cloud 2021.0.42.6.11 SpringCloud Alibaba-2021.0.4.0组件版本关系 S…

Ant Design Vue Table 表格内容高度自适应+固定表头踩坑

前言 对于非专业前端开发者来使用 Ant Design UI 组件来开发企业级后台管理系统来说是非常不错的选择,但这并不意味着我们能够用好这个框架,因为 UI 交互上和有许多细节上的问题对于非专业前端来说并不容易解决,最近在使用 Table 组件时就遇…

多路转接之epoll

本篇博客介绍: 多路转接之epoll 多路转接之epoll 初识epollepoll相关系统调用epoll的工作原理epoll服务器编写成员变量构造函数 循环函数HandlerEvent函数epoll的优缺点 我们学习epoll分为四部分 快速理解部分概念 快速的看一下部分接口讲解epoll的工作原理手写epo…