计算机视觉的监督学习与无监督学习


什么是监督学习?


监督学习是一种机器学习算法,它从一组已标记的 合成数据生成器中生成的训练数据中学习。这意味着数据科学家已经用正确的标签(例如,“猫”或“狗”)标记了训练集中的每个数据点,以便算法可以学习如何预测不可预见数据的结果并准确识别新图像数据中的对象。

监督学习算法的典型计算机视觉任务包括目标检测、视觉识别和分类。

①、在目标检测中,监督学习算法用于学习如何识别和定位图像中的对象。

②、在图像识别中,监督学习算法用于学习如何从一组图像中识别特定对象类别(例如,“人”、“汽车”等)。

③、在图像分类中,监督学习算法用于学习如何为图像分配类标签(例如,“猫”、“狗”等)。

监督学习的例子是什么?

监督学习中常见的算法和技术包括神经网络、支持向量机 (SVM)、逻辑回归、随机森林或决策树算法。

无监督机器学习的工作原理

无监督训练过程中的步骤如下:

1、收集数据: 通过合成数据生成器 收集相关数据。例如,如果要构建一个无监督机器学习模型来对动物图像进行分组,则需要一个图像数据集,该数据集已手动分类到包含狗、猫、鸟等图片的文件夹中。但是,需要注意的是,如果正确标记数据,无监督学习算法产生的结果质量可以大大提高。

2、训练模型:该模型学习将相似的项目组合在一起或在数据中查找模式。

3、评估模型: 每次训练迭代后,都必须评估模型性能,以了解它在未查看和未标记的数据上的表现。

4、部署模型: 当模型性能足够好时,可以将其部署到实际应用程序中。  

智慧城市中的计算机视觉和深度学习

监督学习与无监督学习的主要区别

在下文中,我们将讨论监督学习与无监督学习之间的区别。监督式机器学习技术和无监督式学习模型之间存在根本的特征差异,这些差异决定了它们在特定用例中的有用性。  

监督学习和无监督学习的区别:输入数据

这些机器学习方法之间的最大区别在于,监督学习需要预先收集训练数据,收集训练数据可以使用合成数据生成器,而无监督学习则不需要。因此,监督学习需要大量的前期人工干预才能适当地标记数据。

例如,在计算机视觉中,注释者在图像中标记数万到数百万个数据点。数据选择和标注精度对机器学习模型性能的影响很大。虽然这有助于训练高效的机器学习模型,但存在偏差风险,并且算法只有在精确定义的条件下以及与训练数据非常相似的数据才能很好地运行。  

机器学习技术适用于不同的任务

监督学习用于分类和回归任务,而无监督学习用于聚类和降维任务。

监督式学习算法通过从合成数据生成器 来生成合成训练数据集进行泛化来构建模型。目标是正确标记算法以前从未见过的新数据点。例如,您可以使用监督学习进行图像分类,其中算法学习将数据分类为不同的类别(例如,狗与猫)。监督学习算法将从狗和猫的标记图像中学习,然后能够正确地标记以前从未见过的新图像。

另一方面,无监督学习算法试图在数据中寻找隐藏的模式或内在结构。它不需要标记数据;相反,它根据相似性将数据点分组在一起。例如,您可以使用无监督学习进行图像分割,其中算法尝试查找图像中不同对象之间的边界。

监督学习与无监督学习的复杂性

监督学习更容易实现,因为它有一个特定的目标——学习如何将输入数据映射到目标输出。无监督学习虽然也有明确的目标,但没有它试图实现的特定输出,而是更专注于理解数据的底层结构。  

监督学习通常更昂贵

监督学习和无监督学习之间的另一个区别是,监督学习比无监督学习更昂贵。这是因为训练监督学习模型需要收集和标记数据,这些数据可以借助合成数据生成器 来生成。

一般来说,需要对大量输入数据进行数据收集和注释才能达到预期的效果,尤其是在具有高度可变对象(例如人)的现实世界环境中。另一方面,训练无监督学习模型不需要数据科学家团队手动标记原始数据。  

监督学习在计算机视觉中更准确

最后,监督学习通常比无监督学习更准确。这是因为监督式机器学习算法具有可供学习的训练数据集,而无监督式学习算法则没有。

训练深度神经网络需要对模型进行多次迭代和持续优化 (MLOps),以提高模型从未探索的数据(验证数据集)预测推理结果的能力。在大多数情况下,监督方法可以获得更准确的结果。

监督学习和无监督学习的实际应用?

无监督学习算法用于各种应用,从医学诊断到股票市场预测。一般来说,监督学习比无监督学习更广泛地使用,因为它需要更少的数据,并且更容易实现,因为输出数据是预定义的。

然而,无监督学习有其自身的优势,例如更能抵抗过拟合(卷积神经网络的一大挑战),并且能够更好地从复杂的大数据中学习,例如没有固有结构的客户数据或行为数据。  

监督学习应用示例

1、物体识别: 监督学习算法可用于对图像或视频中的对象进行定位和分类(视频识别)。它们还可用于识别计算机视觉系统中的人员、车辆和其他物体。

公共场所遗弃物检测

2、文本识别: 监督学习算法可用于读取图像或视频中的文本。光学字符识别 (OCR) 系统将书面文本转换为机器可读的形式,例如,使用 AI 读取车牌或扫描文档。 具有车牌识别功能的 OCR 应用程序。

3、人脸识别:人脸识别使用在数据库上训练的深度神经网络来识别图像或视频中的人脸。该技术用于安全应用,例如解锁手机或进入建筑物。有关更多示例,请查看 DeepFace,一个流行的人脸识别库。

4、目视检查: 机器学习模型用于检查生产线上的产品是否存在工业制造中的缺陷。这是通过训练监督式机器学习模型来完成的,该模型使用标记的训练数据区分有缺陷和无缺陷的项目。

视觉缺陷检测在制造业中的应用

无监督学习的实际应用

1、异常检测: 异常检测是识别数据集中异常值的过程。这可用于欺诈检测、识别数据中的错误以及发现异常模式。这种大数据分析对于保险和金融行业识别可疑交易和检测内幕交易非常重要。

2、 语音识别: 在自然语言处理(NLP)和自然语言理解(NLU)领域,无监督学习对于提高对单词和短语上下文的理解非常重要。

3、文本情感分析: 算法可用于情感分析,根据人们对文字、表情符号和表情符号的使用来了解人们对某事的感受。这些方法用于分析社交媒体数据中抑郁检测的情绪水平。

4、客户角色: 聚类分析用于将相似的数据点组合在一起。这可用于营销、客户细分以及根据客户和买家的行为识别客户和买家档案。

5、医学影像: 无监督方法允许机器自行学习,以识别监督学习可能无法发现的模式和异常。它还可用于分割图像,以便识别单个对象。这在医学图像中特别有用,因为小细节可以产生很大的不同。

6、时间序列分析: 时间序列数据是以固定间隔间隔的数据点序列。无监督学习可用于查找时间序列数据中的模式,并根据未标记的数据对未来事件进行预测。这对于天气预报、销售预测、股票市场预测和预测交通模式等非常重要。  

总结

监督方法和非监督方法之间的最大区别在于,监督模型需要标记输入。通过监督学习,我们向机器提供已知信息,以便它可以学习找到这些模式并做出预测。无监督学习采用未标记的数据集,并尝试自动识别其中的结构和模式。

监督学习的好处是,您可以训练模型,使其在解决输出选项有限(分类问题)的明确指定问题时更加准确。无监督学习更具探索性,不需要预先标记的数据,使其更加灵活。它可用于细分客户、查找关系和检测异常。

监督学习和无监督学习都是机器学习工具箱中用于数据分析的重要工具。决定使用哪一个取决于您尝试解决的问题的性质以及可用的数据量和类型。

转载:计算机视觉的监督学习与无监督学习 (mvrlink.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/178617.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式总结

1.将软件与设计模式比拟为城市与建筑模式,那么在面向对象的解决方案里,我们将对象和接口看成墙壁和门窗,模式的核心在于提供了相关问题的解决方案。 在软件设计中可能会遇到很多类似的问题,在每次遇到类似问题时我们不必全都新想…

MYSQL 多表联查详解

目录 一、一个案例引发的多表连接 二、笛卡尔积的错误和与正确的多表查询 2.1、笛卡尔积错误展示 2.2、笛卡尔积解决方法 2.3、练习 三、多表查询分类 3.1、等值连接 vs 非等值连接 3.2、自连接 vs 非自连接 3.3、内连接 vs 外连接 内连接(inner join&…

第2篇 机器学习基础 —(4)k-means聚类算法

前言:Hello大家好,我是小哥谈。聚类算法是一种无监督学习方法,它将数据集中的对象分成若干个组或者簇,使得同一组内的对象相似度较高,不同组之间的对象相似度较低。聚类算法可以用于数据挖掘、图像分割、文本分类等领域…

记录--这个前端Api管理方案会更好?

这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 简介 大家好,前端小白一枚,目前接触后台管理系统比较多,经常遇到不同对象的增删改查的接口,如何对Api进行一个有比较好的管理是个问题。在学习偏函数的时…

C#中使用LINQtoSQL管理SQL数据库之添加、修改和删除

目录 一、添加数据 二、修改数据 三、删除数据 四、添加、修改和删除的源码 五、生成效果 1.VS和SSMS原始记录 2.删除ID2和5的记录 3.添加记录ID2、5和8 4.修改ID3和ID4的记录 用LINQtoSQL管理SQL Server数据库时,主要有添加、修改和删除3种操作。 项目中创…

app开发之后需要做什么

在完成app的开发之后,还有一系列的工作需要进行,以确保app的顺利上线和用户的良好体验。下面将从原理和详细介绍两个方面来介绍app开发之后需要做的工作。 一、原理介绍 1. 测试与调试:在app开发完成后,需要进行全面的测试与调试…

[论文笔记]RetroMAE

引言 RetroMAE,中文题目为 通过掩码自编码器预训练面向检索的语言模型。 尽管现在已经在许多重要的自然语言处理任务上进行了预训练,但对于密集检索来说,仍然需要探索有效的预训练策略。 本篇工作,作者提出RetroMAE,一个新的基于掩码自编码器(Masked Auto-Encoder,MAE)…

十种排序算法(1) - 准备测试函数和工具

1.准备工作 我们先写一堆工具&#xff0c;后续要用&#xff0c;不然这些写在代码里可读性巨差 #pragma once #include<stdio.h>//为C语言定义bool类型 typedef int bool; #define false 0 #define true 1//用于交互a和b inline void swap(int* a, int* b) {/*int c *a…

AutoDL 云/本地部署 百川2、GLM2

AutoDL 云上部署 百川2、GLM2 AutoDL 云上部署 百川2、GLM2配置环境体验常见问题huggingface访问不了&#xff0c;使用学术资源加速大文件上传&#xff0c;百度、阿里网盘都可CUDA 空间不足系统盘空间不足省钱绝招软件源 本地部署 百川2、GLM2根据显存大小选模型拉取docker镜像…

MySQL-----事务

事务的概念 事务是一种机制&#xff0c;一个操作序列。包含了一组数据库的操作命令&#xff0c;所有的命令都是一个整体&#xff0c;向系统提交或者撤销的操作&#xff0c;要么都执行&#xff0c;要么都不执行。 是一个不可分割的单位 事务的ACID特点 ACID&#xff0c;是指在可…

【Algorithm】最容易理解的蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)算法

看了不少解读和笔记&#xff0c;本文把最容易理解的解读做个总结。 1. 蒙特卡洛方法 蒙特卡洛方法(Monte Carlo method)&#xff0c;是一种“统计模拟方法”。20世纪40年代&#xff0c;为建造核武器&#xff0c;冯.诺伊曼 等人发明了该算法。因赌城蒙特卡洛而得名&#xff0c…

R语言用jsonlite库写的一个图片爬虫

以下是一个使用R语言和jsonlite库下载图片的程序。首先&#xff0c;我们需要导入jsonlite库和options()函数&#xff0c;然后将代理服务器的主机名和端口号设置为"duoip"和"8000"。接着&#xff0c;我们将URL设置为"https://yun.baidu.com/"&…

LeetCode 143. 重排链表(双指针、快慢指针)

题目&#xff1a; 链接&#xff1a;LeetCode 143. 重排链表 难度&#xff1a;中等 给定一个单链表 L 的头节点 head &#xff0c;单链表 L 表示为&#xff1a; L0 → L1 → … → Ln-1 → Ln 请将其重新排列后变为&#xff1a; L0 → Ln → L1 → Ln-1 → L2 → Ln-2 → … 不…

Redis入门指南学习笔记(2):常用数据类型解析

一.前言 本文主要介绍Redis中包含几种主要数据类型&#xff1a;字符串类型、哈希类型、列表类型、集合类型和有序集合类型。 二.字符串类型 字符串类型是Redis中最基本的数据类型&#xff0c;它是其他4种数据类型的基础&#xff0c;其他数据类型与字符串类型的差别从某种角度…

欧科云链研究院:如何降低Web3风险,提升虚拟资产创新的安全合规

在香港Web3.0行业&#xff0c;技术推动了虚拟资产投资市场的快速增长&#xff0c;但另一方面&#xff0c;JPEX诈骗案等行业风险事件也接连发生&#xff0c;为Web3行业发展提供了重要警示。在近期的香港立法会施政报告答问会上&#xff0c;行政长官李家超表示&#xff0c;与诈骗…

自己动手实现一个深度学习算法——三、神经网络的学习

文章目录 1.从数据中学习1&#xff09;数据驱动2&#xff09;训练数据和测试数据 2.损失函数1)均方误差2)交叉熵误差3)mini-batch学习 3.数值微分1&#xff09;概念2&#xff09;数值微分实现 4.梯度1&#xff09;实现2&#xff09;梯度法3&#xff09;梯度法实现4&#xff09;…

从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型

从零开始的目标检测和关键点检测&#xff08;二&#xff09;&#xff1a;训练一个Glue的RTMDet模型 一、config文件解读二、开始训练三、数据集分析四、ncnn部署 从零开始的目标检测和关键点检测&#xff08;一&#xff09;&#xff1a;用labelme标注数据集 从零开始的目标检测…

[H5动画制作系列]坐标转化问题一次搞清,一了百了

前言: 本次演示的坐标包括三个坐标层&#xff1a; 1.舞台上的某位置相对于舞台的全局坐标的坐标(黑色)。 2.舞台上蓝色实例内部某位置相对于该蓝色实例内部局部坐标的坐标(蓝色)。 3.舞台上蓝色实例内部的红色实例内部某位置相对该红色实例内部局部坐标的坐标(红色)。 舞台…

Day18力扣打卡

打卡记录 寻找重复数&#xff08;双指针&#xff09; 链接 Floyd判圈法&#xff0c;先用快慢指针以不同速率进行移动&#xff0c;最终一定会出现相遇点&#xff0c;然后在使一指针从初始开始&#xff0c;两指针再以同步调移动&#xff0c;再次相遇的点一定为循环开始的点位。 …

赋能制造业高质量发展,释放采购数字化新活力——企企通亮相武汉2023国际智能制造创新论坛

摘要 “为应对成本上升、供应端不稳定、供应链上下游协同困难、决策无数据依据等问题&#xff0c;利用数字化手段降本增效、降低潜在风险十分关键。在AI等先进技术发展、供应链协同效应和降本诉求等机遇的驱动下&#xff0c;采购供应链数字化、协同化成为企业激烈竞争的优先选…