计算机视觉:使用opencv进行直线检测

1 直线检测介绍

在图像处理中,直线检测是一种常见的算法,它通常获取n个边缘点的集合,并找到通过这些边缘点的直线。其中用于直线检测,最为流行的检测器是基于霍夫变换的直线检测技术。

1.1 什么是霍夫变换

霍夫变换(Hough Transform)是图像处理中的一种特征提取方法,可以识别图像中的几何形状。它将在参数空间内进行投票来决定其物体形状,通过检测累计结果找到一极大值所对应的解,利用此解即可得到一个符合特定形状的参数。

1.2 霍夫变换原理

一条直线可由两个点A=(X1,Y1)和B=(X2,Y2)确定(笛卡尔坐标)

另一方面,y = kx + q 也可以写成关于(k,q)的函数表达式(霍夫空间):

对应的变换可以通过图形直观表示:

变换后的空间成为霍夫空间。即:笛卡尔坐标系中一条直线,对应霍夫空间的一个点

反过来同样成立(霍夫空间的一条直线,对应笛卡尔坐标系的一个点):

 再来看看A、B两个点,对应霍夫空间的情形:

接下来,再看一下三个点共线的情况: 

 

可以看出如果笛卡尔坐标系的点共线,这些点在霍夫空间对应的直线交于一点:这也是必然,共线只有一种取值可能。

如果不止一条直线呢?再看看多个点的情况(有两条直线):

其实(3,2)与(4,1)也可以组成直线,只不过它有两个点确定,而图中A、B两点是由三条直线汇成,这也是霍夫变换的后处理的基本方式选择由尽可能多直线汇成的点

霍夫空间:选择由三条交汇直线确定的点(中间图),对应的笛卡尔坐标系的直线(右图)。

到这里问题似乎解决了,已经完成了霍夫变换的求解,但是如果像下图这种情况呢?

k=∞是不方便表示的,而且q怎么取值呢,这样不是办法。因此考虑将笛卡尔坐标系换为:极坐标表示

在极坐标系下,其实是一样的:极坐标的点→霍夫空间的直线,只不过霍夫空间不再是[k,q]的参数,而是[\rho, \theta ]的参数,给出对比图: 

2 使用opencv进行直线检测

在使用霍夫变换侦测直线前,须先利用边缘检测算法来减少图像的数据量、剔掉不相关的信息,保留图像中重要的结构特征。

2.1 图像灰度化

原始图像与灰度化的图像如下:

2.2 边缘检测

利用边缘检测算法(Canny、Sobel、Laplacian等)来检测物体边缘,代码如下:

canny = cv2.Canny(gray_img, 30, 150)

2.3 霍夫变换

使用霍夫变换来得出直线检测结果,代码如下:

lines = cv2.HoughLines(canny, 1, np.pi / 180, 180)
lines1 = lines[:, 0, :]
for rho, theta in lines1[:]:a = np.cos(theta)b = np.sin(theta)x0 = a * rhoy0 = b * rhox1 = int(x0 + 3000 * (-b))y1 = int(y0 + 3000 * (a))x2 = int(x0 - 3000 * (-b))y2 = int(y0 - 3000 * (a))cv2.line(im, (x1, y1), (x2, y2), (0, 0, 255), 2)

运行结果显示如下:

2.4 完整代码

import cv2
import numpy as npim = cv2.imread("../data/ladder.jpg")cv2.imshow('original', im)
cv2.waitKey(0)gray_img = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray_img)
cv2.waitKey(0)canny = cv2.Canny(gray_img, 30, 150)
cv2.imshow('canny', canny)
cv2.waitKey(0)lines = cv2.HoughLines(canny, 1, np.pi / 180, 180)
lines1 = lines[:, 0, :]
for rho, theta in lines1[:]:a = np.cos(theta)b = np.sin(theta)x0 = a * rhoy0 = b * rhox1 = int(x0 + 3000 * (-b))y1 = int(y0 + 3000 * (a))x2 = int(x0 - 3000 * (-b))y2 = int(y0 - 3000 * (a))cv2.line(im, (x1, y1), (x2, y2), (0, 0, 255), 2)cv2.imshow('original', im)
cv2.waitKey(0)

3 使用opencv检测倾角

import cv2
import numpy as npdef line_detect(image):# 将图片转换为HSVhsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 设置阈值lowera = np.array([0, 0, 221])uppera = np.array([180, 30, 255])mask1 = cv2.inRange(hsv, lowera, uppera)kernel = np.ones((3, 3), np.uint8)# 对得到的图像进行形态学操作(闭运算和开运算)mask = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, kernel) #闭运算:表示先进行膨胀操作,再进行腐蚀操作mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)  #开运算:表示的是先进行腐蚀,再进行膨胀操作# 绘制轮廓edges = cv2.Canny(mask, 50, 150, apertureSize=3)# 显示图片cv2.imshow("edges", edges)# 检测白线  这里是设置检测直线的条件,可以去读一读HoughLinesP()函数,然后根据自己的要求设置检测条件lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 40,minLineLength=10,maxLineGap=10)print "lines=",linesprint "========================================================"i=1# 对通过霍夫变换得到的数据进行遍历for line in lines:# newlines1 = lines[:, 0, :]print "line["+str(i-1)+"]=",linex1,y1,x2,y2 = line[0]  #两点确定一条直线,这里就是通过遍历得到的两个点的数据 (x1,y1)(x2,y2)cv2.line(image,(x1,y1),(x2,y2),(0,0,255),2)   #在原图上画线# 转换为浮点数,计算斜率x1 = float(x1)x2 = float(x2)y1 = float(y1)y2 = float(y2)print "x1=%s,x2=%s,y1=%s,y2=%s" % (x1, x2, y1, y2)if x2 - x1 == 0:print "直线是竖直的"result=90elif y2 - y1 == 0 :print "直线是水平的"result=0else:# 计算斜率k = -(y2 - y1) / (x2 - x1)# 求反正切,再将得到的弧度转换为度result = np.arctan(k) * 57.29577print "直线倾斜角度为:" + str(result) + "度"i = i+1#   显示最后的成果图cv2.imshow("line_detect",image)return resultif __name__ == '__main__':# 读入图片src = cv2.imread("lines/line6.jpg")# 设置窗口大小cv2.namedWindow("input image", cv2.WINDOW_AUTOSIZE)# 显示原始图片cv2.imshow("input image", src)# 调用函数line_detect(src)cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/188504.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言概述

目录 ​编辑 1. C语言发展史 2. C语言特点 3. C语言标准 4. C语言编程机制 4.1 预处理(Preprocessing) 4.2 编译(Compilation) 4.3 汇编(Assemble) 4.4 链接(Linking) 结语 1. C语言发展史 C语言是由美国贝尔实验室的Dennis Ritchie于1972年设计开发的一种编…

钉钉统计部门个人请假次数go

前言 最近小组需要统计部门各种请假次数,写了一个方法,第一次实战中用到递归函数,简单记录一下。 效果展示 这些数据不需要返回json,这里这样是为了方便测试。可以通过这些数据完成其它的操作。 功能实现 钉钉服务端调试工具A…

Spring -Spring之循环依赖源码解析

什么是循环依赖? 很简单,就是A对象依赖了B对象,B对象依赖了A对象。 比如: // A依赖了B class A{public B b; }// B依赖了A class B{public A a; }那么循环依赖是个问题吗? 如果不考虑Spring,循环依赖并…

【神经网络】GAN:生成对抗网络

GAN:生成对抗网络 Generator(生成器)概念 和传统的神经网络不同,Generator除了接受x的输入之外,还会接受一个简单的分布作为z进行输入,从而使得网络的输出也是一个复杂的分布 为什么输出需要时一个分布呢…

关于session的不断变化问题

今天在帮同学解决一个小问题,差点阴沟翻船。 问题再现:他从github上拉了一个项目下来跑,结果发生跑不通问题出现在验证码一直不对。 我一看项目源码,验证码生成后存储再session中了,等用户发送请求验证的时候sessionI…

【刷题】力扣每日一题 : 381、2300、765

前言 本篇文章用于记录在做力扣每日一题的时候遇到的一些知识点以及自己的思路 381 题干 题目链接 我的思路及做题过程 思路1 我的想法是 记录每个字符串的字母出现个数 然后比较两个字符串是否有字母同时出现 class Solution { public:int judge(string s1, string s2…

vscode因为大文件而无限崩溃的问题,窗口意外终止(原因:“oom“,代码:“-536870904“

复制了一大堆的代码(好几兆)到一个文件里,然后就导致 vscode 卡死, 之后就算把该文件删掉了,打开vscode还是会默认打开该文件而卡死 解决办法: win R 输入 %appdata%/code/ 删除该文件夹下的 backups/ 文件…

索尼RSV文件怎么恢复为MP4视频

索尼相机RSV是什么文件? 如果您的相机是索尼SONY A7S3,A7M4,FX3,FX3,FX6,或FX9等,有时录像会产生一个RSV文件,而没有MP4视频文件。RSV其实是MP4的前期文件,经我对RSV文件…

CSS特效006:绘制不断跳动的心形

css实战中,怎么绘制不断跳动的心形呢? 绘图的时候主要用到了transform: rotate(-45deg); transform-origin: 0 100%; transform: rotate(45deg); transform-origin: 100% 100%; 动画使用keyframes 时间上为infinite。 效果图 源代码 /* * Author: 大剑…

切换数据库的临时表空间为temp1 / 切换数据库的undo表空间为 undotbs01

目录 ​编辑 一、切换临时表空间 1、登录数据库 2、查询默认临时表空间 3、创建临时表空间temp1(我们的目标表空间) 4、修改默认temp表空间 5、查询用户默认临时表空间 6、命令总结: 二、切换数据库的undo表空间 1、查询默认undo表…

【iOS开发】iOS App的加固保护原理:使用ipaguard混淆加固

​ 摘要 在开发iOS应用时,保护应用程序的安全是非常重要的。本文将介绍一种使用ipaguard混淆加固的方法来保护iOS应用的安全。通过字符串混淆、类名和方法名混淆、程序结构混淆加密以及反调试、反注入等主动保护策略,可以有效地保护应用程序的安全性。 …

SparkSQL语法优化

SparkSQL在整个执行计划处理的过程中,使用了Catalyst 优化器。 1 基于RBO的优化 在Spark 3.0 版本中,Catalyst 总共有 81 条优化规则(Rules),分成 27 组(Batches),其中有些规则会被归…

2.docker镜像的导入导出

目录 概述docker 常用命令下载导出导入镜像结束 概述 docker 常用命令 本章节使用到的命令,总结在此,后面有使用案例。 命令作用docker images显示镜像docker rmi $(docker images -q)删除系统上所有的镜像docker rmi -f强制删除多个镜像 &#xff1a…

LeetCode146.LRU缓存

写了一个小时,终于把示例跑过了,没想到啊提交之后第19/22个测试用例没过 我把测试用例的输出复制在word上看看和我的有什么不同,没想到有18页的word,然后我一直检查终于找出了问题,而且这个bug真的太活该了&#xff0c…

云栖大会丨桑文锋:打造云原生数字化客户经营引擎

近日,2023 云栖大会在杭州举办。今年云栖大会回归了 2015 的主题:「计算,为了无法计算的价值」。神策数据创始人 & CEO 桑文锋受邀出席「生态产品与伙伴赋能」技术主题,并以「打造云原生数字化客户经营引擎」为主题进行演讲。…

男科医院服务预约小程序的作用是什么

医院的需求度从来都很高,随着技术发展,不少科目随之衍生出新的医院的,比如男科医院、妇科医院等,这使得目标群体更加精准,同时也赋能用户可以快速享受到服务。 当然相应的男科医院在实际经营中也面临痛点:…

微服务-我对Spring Clound的理解

官网:https://spring.io/projects/spring-cloud 官方说法:Spring Cloud 为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理、服务发现、熔断器、智能路由、微代理、控制总线、一次性令牌、全局锁、领导选举、分布式会话…

什么是Amazon Simple Email Service(SES 群发邮件)

Amazon Simple Email Service(Amazon SES)让您可以使用 Amazon SES API 或 SMTP 接口放心地联络到客户,而无需使用本地简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)电子邮件服务器。 目录 什么是…

最新支付宝转卡码生成之转账源代码(隐藏部分卡号)

一、需要准备好自己的卡号、名称、以及对应的姓名 二、然后将自己的信息填入下面的代码中 三、然后将拼接好的代码,利用转码技术生产对应的二维码 四、这样一个跳转银行卡二维码的转账码就做好了 效果演示:如下 支付宝扫码、跳转码、转卡码、隐藏卡号…

classification_report分类报告的含义

classification_report分类报告 基础知识混淆矩阵(Confusion Matrix)TP、TN、FP、FN精度(Precision)准确率(Accuracy)召回率(Recall)F1分数(F1-score) classi…