【C++】模板初阶

目录

一,泛型编程

二,函数模板

1,函数模板概念

2,函数模板格式

3,函数模板的原理

4,函数模板的实例化

5,模板参数的匹配原则

三,类模板

1,类模板的定义格式

2,类模板的实例化

3,模板【栈】的用法


一,泛型编程

我们一般如何实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}
void Swap(double& left, double& right)
{double temp = left;left = right;right = temp;
}
void Swap(char& left, char& right)
{char temp = left;left = right;right = temp;
}

使用函数重载虽然可以实现,但是有一下几个不好的地方:

1,重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自         己增加对应的函数

2,代码的可维护性比较低,一个出错可能所有的重载均出错

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?

答案是可以的!

如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件 (即生成具体类型的代码),那将会节省许多头发。

巧的是前人早已将树栽好,我们只需在此乘凉。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

二,函数模板

1,函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

2,函数模板格式

template < typename T1,typename T2,.......,typename Tn >

返回值类型 函数名 ( 参数列表){ } 

拿交换函数举例:

template<typename T>
void Swap(T& left, T& right)
{T temp = left;left = right;right = temp;
}

注意:

typename 是用来定义模板参数关键字,也可以使用 class ( 切记:不能使用 struct 代替 class)

3,函数模板的原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器 

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。

比如:当用 double 类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理 double 类型的代码,对于字符类型也是如此。

4,函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。

模板参数实例化分为:隐式实例化和显式实例化。

1,隐式实例化:让编译器根据实参推演模板参数的实际类型

template<class T>
T Add(const T& left, const T& right)
{return left + right;
}int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1, a2);Add(d1, d2);Add(a1, (int)d1);return 0;
}

以上是没有问题的,但是要求各个参数的类型必须一致,否则会报错;

template<class T>
T Add(const T& left, const T& right)
{return left + right;
}int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1,d1);return 0;
}

通过实参 a1 将 T 推演为 int,通过实参 d1将 T 推演为 double 类型,但模板参数列表中只有一个T, 编译器无法确定此处到底该将 T 确定为 int 或者 double 类型而报错。

再看一个例子:

int Add(const int& left, const int& right)
{return left + right;
}int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1,d1);return 0;
}

像这种是可以运行的,因为编译器会进行类型的转换;

注意:

在模板中,编译器一般不会进行类型转换操作。

此时有两种处理方式:1,用户自己来强制转化 2,使用显式实例化

2,显式实例化:在函数名后的 < > 中指定模板参数的实际类型

template <class T>
T Add(const T& left, const T& right)
{return left + right;
}int main(void)
{int a = 10;double b = 20.0;// 显式实例化Add<int>(a, b);return 0;
}

如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

5,模板参数的匹配原则

一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数

// 专门处理int的加法函数
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return 0;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{cout << "T Add(T left, T right)" << endl;return 0;
}
void Test()
{Add(1, 2); // 与非模板函数匹配,编译器不需要特化Add<int>(1, 2); // 调用编译器特化的Add版本
}
int main()
{Test();return 0;
}

对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。

如果模板可以产生一个具有更好匹配的函数, 那么将选择模板

// 专门处理int的加法函数
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{cout << "T1 Add(T1 left, T2 right)" << endl;return left + right;
}
void Test()
{Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}
int main()
{Test();return 0;
}

模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

三,类模板

1,类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{// 类内成员定义
}; 

我们还是来看一下我们的老朋友【栈】;

// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:Vector(size_t capacity = 10): _pData(new T[capacity]), _size(0), _capacity(capacity){}// 使用析构函数演示:在类中声明,在类外定义。~Vector();void PushBack(const T& data);void PopBack();// ...size_t Size() { return _size; }T& operator[](size_t pos){assert(pos < _size);return _pData[pos];}private:T* _pData;size_t _size;size_t _capacity;
};//注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{if (_pData)delete[] _pData;_size = _capacity = 0;
}

这里需要的是类模板中函数放在类外进行定义时,需要加模板参数列表 template <class T>

2,类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。

// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;

3,模板【栈】—【vector】的用法

兄弟们看我讲了这么多,可能还不会正真的用法,我来给大家示范一下大家就会觉得很香了;

#include<iostream>
#include<vector>
using namespace std;int main()
{vector<int> vec;for (int i = 0; i < 10; i++)vec.push_back(i);for (auto i : vec)cout << i << " " << endl;return 0;
}

包个头文件就可以直接使用了,【栈】对应的是【vector】;

是不是很方便;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/189863.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

⑤ 【MySQL】DCL语句 —— 用户管理、权限控制

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ MySQL用户与权限 ⑤ 【MySQL】DCL语句 —— 用…

pytorch中对nn.BatchNorm2d()函数的理解

pytorch中对BatchNorm2d函数的理解 简介计算3. Pytorch的nn.BatchNorm2d()函数4 代码示例 简介 机器学习中&#xff0c;进行模型训练之前&#xff0c;需对数据做归一化处理&#xff0c;使其分布一致。在深度神经网络训练过程中&#xff0c;通常一次训练是一个batch&#xff0c…

U-Mail邮件系统安全登录解决方案

企业邮箱是企业对内对外商务往来的主要通信工具&#xff0c;并且企业邮箱里面还包含了大量企业内部隐私信息、商业机密等&#xff0c;很容易成为黑客的攻击目标。其中邮件盗号是企业邮箱遭受攻击的主要形式&#xff0c;一旦企业邮箱密码被黑客盗取&#xff0c;黑客不仅可以利用…

操作系统 | 虚拟机及linux的安装

​ &#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《操作系统实验室》&#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 目录结构 1.操作系统实验之虚拟机及linux的安装 1.1 实验目的 1.2 实验内容 1.3 实验步骤 …

BIO、NIO、AIO之间有什么区别

文章目录 BIO优缺点示例代码 NIO优缺点示例代码 AIO优缺点示例代码 总结 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 BIO、NIO和AIO是Java编程语言中用于处理输入输出&#xff08;IO…

MYSQL字符串函数详解和实战(字符串函数大全,内含示例)

MySQL提供了许多字符串函数&#xff0c;用于处理和操作字符串数据。以下是一些常用的MYSQL字符串函数。 建议收藏以备后续用到查阅参考。 目录 一、CONCAT 拼接字符串 二、CONCAT_WS 拼接字符串 三、SUBSTR 取子字符串 四、SUBSTRING 取子字符串 五、SUBSTRING_INDEX 取子…

《红蓝攻防对抗实战》十二.内网穿透之利用ICMP协议进行隧道穿透

内网穿透之利用ICMP协议进行隧道穿透 一.前言二.前文推荐三.利用ICMP协议进行隧道穿透1.ICMPsh获取反弹shell2.PingTunnel 搭建隧道 四.本篇总结 一.前言 本文介绍了利用ICMP协议进行隧道穿透的方法。ICMP协议不需要开放端口&#xff0c;可以将TCP/UDP数据封装到ICMP的Ping数据…

Mysql数据库 14.SQL语言 视图

一、视图的概念 视图&#xff1a;就是由数据库中一张或多张表根据特定的条件查询出的数据狗造成的虚拟表 二、视图的作用 安全性&#xff0c;简单性 三、视图的语法 语法 create view 视图表 as select_statement; 代码实现 #创建视图 将查询结果创建称为视图&#x…

Flutter开发中的一些Tips(四)

最近接手了一个flutter项目&#xff0c;整体感觉代码质量不高&#xff0c;感觉有些是初学者容易犯的问题。几年前写的前三篇&#xff0c;我是站在我自己开发遇到问题的角度&#xff0c;这篇是站在别人遇到问题的角度&#xff0c;算是一种补充。下面我整理一下遇到的小问题&…

中国专利转让数据集(1985-2021年)

专利转让数据追踪和记录专利从一个实体转移到另一个实体的过程。这些数据不仅包括参与转让的申请人和受让人的身份信息&#xff0c;如名字和地址&#xff0c;还涵盖了转让的具体法律细节&#xff0c;包括转让执行日、转让次数、法律状态变更&#xff0c;以及转让登记的相关信息…

在Spring Boot中使用MyBatis访问数据库

MyBatis&#xff0c;这个对各位使用Java开发的开发者来说还是蛮重要的&#xff0c;我相信诸位在企业开发项目的时候&#xff0c;大多数采用的是Mybatis。使用MyBatis帮助我们解决各种问题&#xff0c;实际上这篇文章&#xff0c;基本上默认为可以跳过的一篇&#xff0c;但是为了…

Linux服务器从零开始训练 RT-DETR 改进项目 (Ultralytics) 教程,改进RTDETR算法(包括使用训练、验证、推理教程)

手把手从零开始训练 RT-DETR 改进项目 (Ultralytics版本) 教程,改进RTDETR算法 本文以Linux服务器为例:从零开始使用Linux训练 RT-DETR 算法项目 《芒果剑指 RT-DETR 目标检测算法 改进》 适用于芒果专栏改进RT-DETR算法 文章目录 百度 RT-DETR 算法介绍改进网络代码汇总第…

arcgis基础篇--实验

一、绘制带空洞的面要素 方法一&#xff1a;先绘制出一个面区域&#xff0c;然后在面上再绘制一个面区域代表面洞&#xff0c;两者位于同一个图层内&#xff0c;选中代表面洞的区域&#xff0c;选择【编辑器】-【裁剪】工具&#xff0c;将面裁剪出一个洞&#xff0c;随后删除代…

openinstall携手途虎养车,赋能汽车服务数字化

近日&#xff0c;openinstall与中国领先的一站式汽车服务平台途虎养车再次续约&#xff0c;双方将开启第三年合作。过去两年&#xff0c;途虎在建设线上线下一体化数字平台的过程中&#xff0c;深度结合openinstall传参归因与渠道统计技术&#xff0c;打造出了一套高效的渠道来…

GZ038 物联网应用开发赛题第4套

2023年全国职业院校技能大赛 高职组 物联网应用开发 任 务 书 &#xff08;第4套卷&#xff09; 工位号&#xff1a;______________ 第一部分 竞赛须知 一、竞赛要求 1、正确使用工具&#xff0c;操作安全规范&#xff1b; 2、竞赛过程中如有异议&#xff0c;可向现场考评…

Hadoop学习总结(使用Java API操作HDFS)

使用Java API操作HDFS&#xff0c;是在安装和配置Maven、IDEA中配置Maven成功情况下进行的&#xff0c;如果Maven安装和配置不完全将不能进行Java API操作HDFS。 由于Hadoop是使用Java语言编写的&#xff0c;因此可以使用Java API操作Hadoop文件系统。使用HDFS提供的Java API构…

C语言进阶

数组 在基础篇说过&#xff0c;数组实际上是构造类型之一&#xff0c;是连续存放的。 一维数组 定义 定义格式&#xff1a;[存储类型] 数据类型 数组名标识符[下标]; 下面分模块来介绍一下数组的定义部分的内容。 1、初始化和元素引用&#xff1a; 可以看到数组是连续存储…

Linux--gcc/g++

一、gcc/g是什么 gcc的全称是GNU Compiler Collection&#xff0c;它是一个能够编译多种语言的编译器。最开始gcc是作为C语言的编译器&#xff08;GNU C Compiler&#xff09;&#xff0c;现在除了c语言&#xff0c;还支持C、java、Pascal等语言。gcc支持多种硬件平台 二、gc…

数据结构 队列(C语言实现)

目录 1.队列的概念及结构2.队列的代码实现 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的 人工智能学习网站&#xff0c; 通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。 点击跳转到网站。 1.队列的概念及结构 队列&#xff1a;只允许在…

Java Web——TomcatWeb服务器

目录 1. 服务器概述 1.1. 服务器硬件 1.2. 服务器软件 2. Web服务器 2.1. Tomcat服务器 2.2. 简单的Web服务器使用 1. 服务器概述 服务器指的是网络环境下为客户机提供某种服务的专用计算机&#xff0c;服务器安装有网络操作系统和各种服务器的应用系统服务器的具有高速…