代码随想录算法训练营第18天|513. 找树左下角的值 112. 路径总和 113.路径总和ii 106.从中序与后序遍历序列构造二叉树

JAVA代码编写

513. 找树左下角的值

给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。

假设二叉树中至少有一个节点。

示例 1:

img

输入: root = [2,1,3]
输出: 1

示例 2:

img

输入: [1,2,3,4,null,5,6,null,null,7]
输出: 7

提示:

  • 二叉树的节点个数的范围是 [1,104]
  • -231 <= Node.val <= 231 - 1

教程:https://programmercarl.com/0513.%E6%89%BE%E6%A0%91%E5%B7%A6%E4%B8%8B%E8%A7%92%E7%9A%84%E5%80%BC.html#%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%89%88%E6%9C%AC

视频:https://www.bilibili.com/video/BV1424y1Z7pn/

方法一:

思路:在树的最后一行找到最左边的值

  • 如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。

  • 那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

复杂度分析

  • 时间复杂度: O(n), n 是二叉树的节点数。

  • 空间复杂度:O(h),h 是二叉树的高度。

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {private int Deep = -1;private int value = 0;public int findBottomLeftValue(TreeNode root) {value = root.val;findleftValue(root,0);return value;}private void findleftValue(TreeNode root, int deep){if(root==null) return;if(root.left==null && root.right==null){if(deep>Deep){value=root.val;Deep = deep;}}if(root.left != null)findleftValue(root.left, deep + 1);if(root.right != null)findleftValue(root.right, deep + 1);}
}

112. 路径总和

给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false

叶子节点 是指没有子节点的节点。

示例 1:

img

输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。

示例 2:

img

输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。

示例 3:

输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。

提示:

  • 树中节点的数目在范围 [0, 5000]
  • -1000 <= Node.val <= 1000
  • -1000 <= targetSum <= 1000

教程:https://programmercarl.com/0112.%E8%B7%AF%E5%BE%84%E6%80%BB%E5%92%8C.html

视频:https://www.bilibili.com/video/BV19t4y1L7CR/

方法一:

思路:用目标和-减去遍历的节点值,每次根据条件当前节点没有左右孩子,且该节点的值=目标值。

复杂度分析

  • 时间复杂度: O(n), n 是二叉树的节点数。
  • 空间复杂度:O(h),h 是二叉树的高度。
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public boolean hasPathSum(TreeNode root, int targetSum) {if (root == null) return false; // 为空退出// 叶子节点判断是否符合if (root.left == null && root.right == null) return root.val == targetSum;// 求两侧分支的路径和return hasPathSum(root.left, targetSum - root.val) || hasPathSum(root.right, targetSum - root.val);}
}

113. 路径总和 II

给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。

叶子节点 是指没有子节点的节点。

示例 1:

img

输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]

示例 2:

img

输入:root = [1,2,3], targetSum = 5
输出:[]

示例 3:

输入:root = [1,2], targetSum = 0
输出:[]

提示:

  • 树中节点总数在范围 [0, 5000]
  • -1000 <= Node.val <= 1000
  • -1000 <= targetSum <= 1000

教程:https://programmercarl.com/0112.%E8%B7%AF%E5%BE%84%E6%80%BB%E5%92%8C.html

方法一:

思路

在深度优先搜索(DFS)过程中,当我们走完一条路径,需要回退到上一个节点继续搜索其他分支时,就需要执行这个操作。

复杂度分析

  • 时间复杂度: O(n),其中 n 为节点数。

  • 空间复杂度: O(h),其中 h 为树的高度。

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<List<Integer>> pathSum(TreeNode root, int targetSum) {List<List<Integer>> res = new ArrayList<>();if (root == null) return res; // 非空判断List<Integer> path = new LinkedList<>();preorderdfs(root, targetSum, res, path);return res;}public void preorderdfs(TreeNode root, int targetSum, List<List<Integer>> res, List<Integer> path) {path.add(root.val);// 遇到了叶子节点if (root.left == null && root.right == null) {// 找到了和为 targetsum 的路径if (targetSum - root.val == 0) {res.add(new ArrayList<>(path));}return; // 如果和不为 targetsum,返回}if (root.left != null) {preorderdfs(root.left, targetSum - root.val, res, path);path.remove(path.size() - 1); // 回溯,移除最后一个节点}if (root.right != null) {preorderdfs(root.right, targetSum - root.val, res, path);path.remove(path.size() - 1); // 回溯}}
}

106. 从中序与后序遍历序列构造二叉树

给定两个整数数组 inorderpostorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树

示例 1:

img

输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]

示例 2:

输入:inorder = [-1], postorder = [-1]
输出:[-1]

提示:

  • 1 <= inorder.length <= 3000
  • postorder.length == inorder.length
  • -3000 <= inorder[i], postorder[i] <= 3000
  • inorderpostorder 都由 不同 的值组成
  • postorder 中每一个值都在 inorder
  • inorder 保证是树的中序遍历
  • postorder 保证是树的后序遍历

教程:https://programmercarl.com/0106.%E4%BB%8E%E4%B8%AD%E5%BA%8F%E4%B8%8E%E5%90%8E%E5%BA%8F%E9%81%8D%E5%8E%86%E5%BA%8F%E5%88%97%E6%9E%84%E9%80%A0%E4%BA%8C%E5%8F%89%E6%A0%91.html#%E6%80%9D%E8%B7%AF

视频:https://www.bilibili.com/video/BV1vW4y1i7dn/

方法一:

思路

106.从中序与后序遍历序列构造二叉树

说到一层一层切割,就应该想到了递归。

中序遍历:LDR,后序遍历LRD

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。
  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
  • 第五步:切割后序数组,切成后序左数组和后序右数组
  • 第六步:递归处理左区间和右区间

复杂度分析

  • 时间复杂度: O(n)
  • 在最坏情况下,树为链状结构,空间复杂度为 O(n);在平衡二叉树的情况下,空间复杂度为 O(logn)
import java.util.HashMap;
import java.util.Map;class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) { this.val = val; }TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}
}public class Solution {Map<Integer, Integer> map;  // 方便根据数值查找位置public TreeNode buildTree(int[] inorder, int[] postorder) {map = new HashMap<>();for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置map.put(inorder[i], i);}return findNode(inorder,  0, inorder.length, postorder,0, postorder.length);  // 前闭后开}public TreeNode findNode(int[] inorder, int inBegin, int inEnd, int[] postorder, int postBegin, int postEnd) {//中序遍历:LDR,后序遍历LRD// 参数里的范围都是前闭后开if (inBegin >= inEnd || postBegin >= postEnd) {  // 不满足左闭右开,说明没有元素,返回空树return null;}int rootIndex = map.get(postorder[postEnd - 1]);  // 找到后序遍历的最后一个元素在中序遍历中的位置TreeNode root = new TreeNode(inorder[rootIndex]);  // 构造结点int lenOfLeft = rootIndex - inBegin;  // 保存中序左子树个数,用来确定后序数列的个数root.left = findNode(inorder, inBegin, rootIndex, postorder, postBegin, postBegin + lenOfLeft);root.right = findNode(inorder, rootIndex + 1, inEnd,  postorder, postBegin + lenOfLeft, postEnd - 1);return root;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190538.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安全框架SpringSecurity-2(集成thymeleaf集成验证码JWT)

一、SpringSecurity 集成thymeleaf ①&#xff1a;复制并修改工程 复制04_spring_security并重命名为05_spring_security_thymeleaf ②&#xff1a;添加配置和依赖 添加thymeleaf依赖 <dependency><groupId>org.springframework.boot</groupId><artif…

Scala中编写多线程爬虫程序并做可视化处理

目录 一、引言 二、Scala爬虫程序的实现 1、引入必要的库 2、定义爬虫类 3、可视化处理 三、案例分析&#xff1a;使用Scala爬取并可视化处理电影数据 1、定义爬虫类 2、实现爬虫程序的控制逻辑 3、可视化处理电影数据 四、总结 一、引言 随着互联网的快速发展&#…

(一)正点原子I.MX6ULL kernel6.1移植准备

一、概述 学完了正点原子的I.MX6ULL移植&#xff0c;正点原子的教程是基于Ubuntu18&#xff0c;使用的是4.1.15的内核&#xff0c;很多年前的了。NXP官方也发布了新的6.1的内核&#xff0c;以及2022.04的uboot。 本文分享一下基于Ubuntu22.04&#xff08;6.2.0-36-generic&…

GPT-4.0网页平台-ChatYY

ChatYY的优势&#xff1a; 1. 支持大部分AI模型&#xff0c;且支持AI绘画&#xff1a; 2. 问答响应速度极快&#xff1a; 3. 代码解析&#xff1a; 4. 支持文档解读&#xff1a; 5. PC、移动端均支持&#xff1a; 访问直达&#xff1a;ChatYY.com

Obsidian同步技巧

Obsidian介绍 Obsidian支持Markdown语法&#xff0c;所见即所得。 软件支持多仓库功能&#xff0c;支持笔记文件夹和分层文件夹&#xff0c;等功能。 值得一提的是&#xff0c;软件的笔记同步功能需要付费。 同步技巧 官方同步方法 若资金充足&#xff0c;则可在Obsidian官网…

非常好用的组件库【semi.design】

文章目录 前言semi.design是什么&#xff1f;怎么使用&#xff1f;设计稿转代码后言 前言 hello world欢迎来到前端的新世界 &#x1f61c;当前文章系列专栏&#xff1a;前端系列文章 &#x1f431;‍&#x1f453;博主在前端领域还有很多知识和技术需要掌握&#xff0c;正在不…

CCLink转Modbus TCP网关_MODBUS网口设置

兴达易控CCLink转Modbus TCP网关是一种用于连接CCLink网络和Modbus TCP网络的设备。它提供了简单易用的MODBUS网口设置&#xff0c;可以帮助用户轻松地配置和管理网络连接 1 、网关做为MODBUS主站 &#xff08;1&#xff09;将电脑用网线连接至网关的P3网口上。 &#xff08;…

产品化的GPT,能否为“百模大战”照亮未来?

这两天&#xff0c;AI圈都处在一种莫名的震撼感当中。 北京时间 11月7日&#xff0c;OpenAI 举办了首次DevDay开发者日活动。活动现场发布了非常多内容&#xff0c;其中有一些按部就班的&#xff0c;比如技术上更新了最新版本的GPT-4 Turbo。也有一些让从业者目瞪口呆&#xff…

Linux之gdb

gdb就是一个Linux的调试工具&#xff0c;类似与vs里面的调试 可执行程序也有格式&#xff0c;不是简单的二进制堆砌

利用角色roles上线wordpress项目

角色订制&#xff1a;roles ① 简介 对于以上所有的方式有个弊端就是无法实现复用假设在同时部署Web、db、ha 时或不同服务器组合不同的应用就需要写多个yml文件。很难实现灵活的调用。   roles 用于层次性、结构化地组织playbook。roles 能够根据层次型结构自动装载变量文…

Postgresql 常用整理

文章目录 1. 查询1.1数据库表1.1.1 获取指定数据库表1.1.2 获取指定数据库表所有列名 1.2 别名1.2.1 子表指定别名1.2.2 查询结果指定别名 1.3 临时表1.3.1 定义临时表1.3.2 使用临时表 1.4 子表1.5 分组1.5.1 group by1.5.2 partition by 1.6 分组后合并指定列字段&#xff1a…

软件测试项目实战经验附视频以及源码【商城项目,app项目,电商项目,银行项目,医药项目,金融项目】(web+app+h5+小程序)

前言&#xff1a; ​​大家好&#xff0c;我是阿里测试君。 最近很多小伙伴都在面试&#xff0c;但是对于自己的项目经验比较缺少。阿里测试君再度出马&#xff0c;给大家找了一个非常适合练手的软件测试项目&#xff0c;此项目涵盖web端、app端、h5端、小程序端&#xff0c;…

自定义Graph Component:1-开发指南

可以使用自定义NLU组件和策略扩展Rasa&#xff0c;本文提供了如何开发自己的自定义Graph Component指南。   Rasa提供各种开箱即用的NLU组件和策略。可以使用自定义Graph Component对其进行自定义或从头开始创建自己的组件。   要在Rasa中使用自定义Graph Component&#x…

对测试职业发展的思考

虽然在测试行业摸爬滚打了很年&#xff0c;随着年龄的增长&#xff0c;职位的升迁&#xff0c;似乎已经走到了尽头&#xff0c;因而还是时不时觉得自己的职业发展目标很模糊&#xff0c;这是最近对自己职业发展的一些思考&#xff0c;希望与大家进行分享和探讨&#xff1a; 1、…

2022最新版-李宏毅机器学习深度学习课程-P46 自监督学习Self-supervised Learning(BERT)

一、概述&#xff1a;自监督学习模型与芝麻街 参数量 ELMO&#xff1a;94MBERT&#xff1a;340MGPT-2&#xff1a;1542MMegatron&#xff1a;8BT5&#xff1a;11BTuring NLG&#xff1a;17BGPT-3&#xff1a;175BSwitch Transformer&#xff1a;1.6T 二、Self-supervised Lear…

4.0 Linux进程前导知识

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 冯.诺依曼体系 CPU&#xff1a;运算器&#xff0c;控制器 输入设备&#xff1a;键盘&#xff0c;麦克风&#xff0c;摄像头&#xff0c;鼠标&#xff0c;网卡&#xff0c;磁盘等。 输出设备&#xff1a;显示器&#xff0…

51单片机PCF8591数字电压表LCD1602液晶显示设计( proteus仿真+程序+设计报告+讲解视频)

51单片机PCF8591数字电压表LCD1602液晶设计 ( proteus仿真程序设计报告讲解视频&#xff09; 仿真图proteus7.8及以上 程序编译器&#xff1a;keil 4/keil 5 编程语言&#xff1a;C语言 设计编号&#xff1a;S0060 51单片机PCF8591数字电压表LCD1602液晶设计 1.主要功能&a…

【C++】【Opencv】minMaxLoc()函数详解和示例

minMaxLoc&#xff08;&#xff09;函数 是 OpenCV 库中的一个函数&#xff0c;用于找到一个多维数组中的最小值和最大值&#xff0c;以及它们的位置。这个函数对于处理图像和数组非常有用。本文通过参数和示例详解&#xff0c;帮助大家理解和使用该函数。 参数详解 函数原型…

linux下使用Docker Compose部署Spug实现公网远程访问

&#x1f4d1;前言 本文主要是linux下使用Docker Compose部署Spug实现公网远程访问的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &am…

CountDownLatch使用

常用于多线程场景&#xff0c;待多线程都结束后方可继续主线程逻辑处理 CodeConstant 常量类 import java.util.HashMap; import java.util.Map;public class CodeConstant {public static final Map<String, Map<String, String>> CODE new HashMap<>();…