【Python】Matplotlib-多张图像的显示

一,情景描述

大家在写论文或者实验报告的时候,经常会放多张图片或数据图像在一起形成对比。比如,我现在有一张经过椒盐噪声处理的图像,现在进行三种滤波,分别是均值,高斯,中值滤波,共计四张图像,怎么才能将他们利用matplotlib库放置到一起呢?跟着我一起来写代码吧!

二,实现原理

1.读取图像

用cv2.imread()函数读取原始图像,图像文件放置在了项目文件夹下,图像需要时opencv支持的图像格式(如jpg,png等等)具体见链接:《OpenCV支持的图片格式》_opencv保存windows可以打开的类型-CSDN博客

# encoding:utf-8
import cv2
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')

2.将BGR转化为RGB

将图像色彩显示转化为RGB通道,否则后续利用matplotlib显示图像的时候会发生色彩通道不兼容导致色彩出现偏差。具体原因见我写的博客:【Bug】当用opencv库的imread()函数读取图像,用matplotlib库的plt.imshow()函数显示图像时,图像色彩出现偏差问题的解决方法-CSDN博客

# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)
img_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2RGB)
img_3 = cv2.cvtColor(img_3, cv2.COLOR_BGR2RGB)
img_4 = cv2.cvtColor(img_4, cv2.COLOR_BGR2RGB)

3.显示图像

# 显示图形
titles = ['噪声图像', '中值滤波', '均值滤波 ', '高斯滤波'] # 设置每个图像的标题
images = [img_1, img_2, img_3, img_4] #将图像存储到images列表里面

 将每个图像标题和图像分别储存到titles和images列表里,方便后续取用,图像标题与图像一一对应,有多少图像存入列表多少。 

for i in range(4):plt.subplot(2, 2, i + 1)plt.imshow(images[i])plt.title(titles[i])plt.xticks(), plt.yticks()
plt.show()

for i in range(4):启动一个循环,循环四次,有多少个图像循环多少次,每次循环代表对一个图像的处理。

plt.subplot(2, 2, i + 1):在Matplotlib中创建一个2x2的子图网格i 的值在每次循环中分别为0,1,2,3,则i + 1 表示子图的位置,即1,2,3,4,下图是2x2的子图网格。

如果是plt.subplot(1, 4, i + 1),则创建是1x4的子图网格,即一行四列。如图:

plt.imshow(images[i])然后使用 plt.imshow 显示列表中的图像,当第一次循环时,i=0,即取出images[0],即第一张图,放到i+1=1的位置。

plt.title(titles[i])设置当前子图的标题,根据 titles 中的标题列表选择相应的标题。

plt.xticks([]), plt.yticks([])隐藏坐标轴,这将使图像更干净,不显示坐标刻,如果去掉参数[],即显示坐标轴:

三,完整代码


# encoding:utf-8
import cv2
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')
# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)
img_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2RGB)
img_3 = cv2.cvtColor(img_3, cv2.COLOR_BGR2RGB)
img_4 = cv2.cvtColor(img_4, cv2.COLOR_BGR2RGB)
# 显示图形
titles = ['噪声图像', '中值滤波', '均值滤波 ', '高斯滤波']
images = [img_1, img_2, img_3, img_4]
for i in range(4):plt.subplot(2, 2, i + 1)plt.imshow(images[i])plt.title(titles[i])plt.xticks([]), plt.yticks([])
plt.show()

实现效果:

今日一笑:

 《天津中德应用技术大学助学金之原来我才是贫困生》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/191822.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面向对象基础(以python语言为例)

1、定义一个类;实例化类的对象;调用类中的方法 #定义一个类 class Student:#类方法(即函数)def study(self,course_name):print(f学生正在学习{course_name})def play(self):print("xx学生正在玩游戏")#实例化&#xf…

如何在 macOS 中删除 Time Machine 本地快照

看到这个可用82GB(458.3MB可清除) 顿时感觉清爽,之前的还是可用82GB(65GB可清除),安装个xcode都安装不上,费解半天,怎么都解决不了这个问题,就是买磁盘情理软件也解决不了…

Windows上基于Tesseract OCR5.0官方语言库的LSTM字库训练

系列文章目录 Tesseract OCR引擎 文章目录 系列文章目录前言一、LSTM字库训练是什么?二、使用步骤1. 环境准备1.1下载Tesseract 程序并安装1.2下载Tesseract 训练字库1.3下载工具jTessBoxEditor 2. LSTM训练2.1 将要训练的图片(jpg/tif)合并成一个文件2.2 生成box文…

自定义Matplotlib中的颜色映射(cmap)

要自定义Matplotlib中的颜色映射(cmap),您可以按照以下步骤进行操作: 导入所需的库: import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap创建自定义颜色映…

面试官问 Spring AOP 中两种代理模式的区别?很多面试者被问懵了

面试官问 Spring AOP 中两种代理模式的区别?很多初学者栽了跟头,快来一起学习吧! 代理模式是一种结构性设计模式。为对象提供一个替身,以控制对这个对象的访问。即通过代理对象访问目标对象,并允许在将请求提交给对象前后进行一…

C++模拟实现——AVL树

AVL树 1.介绍 AVL树是对搜索二叉树的改进,通过特定的方法使得每个节点的左右子树高度差绝对值不超过1,使得避免出现歪脖子的情况,最核心的实现在于插入值部分是如何去实现平衡调整的,由于前面详细实现和解析过搜索二叉树&#x…

OV5640的参数与配置方法

分辨率和速率(FPS) 寄存器配置 I/O 板的驱动能力和方向控制 system clock control OV5640 PLL 允许输入时钟频率范围为 6~27 MHz,最大 VCO 频率为 800 MHz。 MipiClk 用于 MIPI,SysClk 用于图像信号处理 (ISP) 模块的内部时钟。 …

新版本Idea设置启动参数

1.进入配置页面 2.点击下图红框的部分,会看到有很多操作可选 3.选择添加VM参数即可 此时就会多出一个可以输入参数的框了,如下:

网络和Linux网络_1(网络基础)网络概念+协议概念+网络通信原理

目录 1. 网络简介 1.1 独立模式和互联网络模式 1.2 局域网LAN和广域网WAN 2. 协议和协议分层 2.1 协议的作用 2.2 协议分层 2.3 OSI七层模型 3.2 TCP/IP四层(五层)模型 3. 网络通信原理 3.1 协议报头 3.2 局域网和解包分用 3.3 广域网和跨网络 4. 网络中的地址 4…

JVM之类加载器

文章目录 版权声明类加载器类加载器的分类启动类加载器拓展类加载器&应用程序类加载器 双亲委派机制解决三个问题 打破双亲委派机制自定义类加载器案例演示线程上下文类加载器案例梳理OSGi模块化 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我…

mac 安装使用svn教程

mac 安装使用svn教程 一、安装Homebrew 要在Mac OS上安装SVN,首先需要安装Homebrew。Homebrew是一个流行的包管理器,因此我们将使用它来安装SVN。 /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"…

介绍 Docker 的基本概念和优势,以及在应用程序开发中的实际应用

Docker是一种基于容器的虚拟化技术,它允许开发者将应用程序及其依赖项打包到一个轻量级容器中,然后在任何可用的开发、测试和生产环境中进行部署和运行。 下面是Docker的基本概念和优势: 容器:Docker容器是一种独立运行的软件包&a…

【开源】基于Vue.js的校园失物招领管理系统的设计和实现

目录 一、摘要1.1 项目介绍1.2 项目详细录屏 二、研究内容2.1 招领管理模块2.2 寻物管理模块2.3 系统公告模块2.4 感谢留言模块 三、界面展示3.1 登录注册3.2 招领模块3.3 寻物模块3.4 公告模块3.5 感谢留言模块3.6 系统基础模块 四、免责说明 一、摘要 1.1 项目介绍 基于Vue…

数列计算

题目描述 有一列数是 : 请找出这个数列的规律,编写程序计算并输出这个数列的第项,要求是分数形式,并计算这个数列的前项和 ( 结果四舍五入保留两位小数 ) 输入格式 第一行仅有一个正整数 () 。 输出格式 共有 行,第一…

Java基础-基础语法

1、概述 一个 Java 程序可以认为是一系列对象的集合,而这些对象通过调用彼此的方法来协同工作。 对象:对象是类的一个实例,有状态和行为。例如,一条狗是一个对象,它的状态有:颜色、名字、品种;…

Java之“数字困境”:资产管理项目中的Bug追踪与启示

目录 1 前言2 问题的发现3 调试的开始4 深入调试5 调试心得与反思6 结语 1 前言 在程序员的日常工作中,我们时常面对各种令人头疼的问题,其中最令人崩溃的瞬间之一,就是当我们花费大量时间追踪一个看似复杂的bug,最终发现问题的根…

蒙特卡洛树搜索(Monte Carlo Tree Search)揭秘

一. 什么是蒙特卡洛树搜索 蒙特卡洛树搜索(MCTS)是一种启发式搜索算法,一般用在棋牌游戏中,如围棋、西洋棋、象棋、黑白棋、德州扑克等。MCTS与人工神经网络结合,可发挥巨大的作用,典型的例子是2016年的AlphaGo,以4:1…

JAVA集合学习

一、结构 List和Set继承了Collection接口,Collection继承了Iterable Object类是所有类的根类,包括集合类,集合类中的元素通常是对象,继承了Object类中的一些基本方法,例如toString()、equals()、hashCode()。 Collect…

实战Leetcode(五)

Practice makes perfect! 实战一: 思路:我们要用复制的节点来组成一个新的链表,而原链表的节点随机指向其中一个节点,我们首先给每一个节点都复制并且插入到原来节点的后面,然后用复制的节点指向我们原来节…

物理问题中常见的分析问题----什么样的函数性质较好

物理问题中常见的积分符号位置交换问题 重极限与累次极限 高数下的定义 累次极限:求极限时需要遵循一定的顺序重极限:任意方向趋于的极限 两者之间的关系: 两者没啥关系存在累次极限存在而不相等的函数...... 求和符号与积分符号互换--逐项积…