竞赛选题 深度学习的智能中文对话问答机器人

文章目录

  • 0 简介
  • 1 项目架构
  • 2 项目的主要过程
    • 2.1 数据清洗、预处理
    • 2.2 分桶
    • 2.3 训练
  • 3 项目的整体结构
  • 4 重要的API
    • 4.1 LSTM cells部分:
    • 4.2 损失函数:
    • 4.3 搭建seq2seq框架:
    • 4.4 测试部分:
    • 4.5 评价NLP测试效果:
    • 4.6 梯度截断,防止梯度爆炸
    • 4.7 模型保存
  • 5 重点和难点
    • 5.1 函数
    • 5.2 变量
  • 6 相关参数
  • 7 桶机制
    • 7.1 处理数据集
    • 7.2 词向量处理seq2seq
    • 7.3 处理问答及答案权重
    • 7.4 训练&保存模型
    • 7.5 载入模型&测试
  • 8 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的中文对话问答机器人

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目架构

整个项目分为 数据清洗 和 建立模型两个部分。

(1)主要定义了seq2seq这样一个模型。
首先是一个构造函数,在构造函数中定义了这个模型的参数。
以及构成seq2seq的基本单元的LSTM单元是怎么构建的。

(2)接着在把这个LSTM间单元构建好之后,加入模型的损失函数。
我们这边用的损失函数叫sampled_softmax_loss,这个实际上就是我们的采样损失。做softmax的时候,我们是从这个6000多维里边找512个出来做采样。
损失函数做训练的时候需要,测试的时候不需要。训练的时候,y值是one_hot向量

(3)然后再把你定义好的整个的w[512*6000]、b[6000多维],还有我们的这个cell本身,以及我们的这个损失函数一同代到我们这个seq2seq模型里边。然后呢,这样的话就构成了我们这样一个seq2seq模型。
函数是tf.contrib.legacy_seq2seq.embedding_attention_seq2seq()

(4)最后再将我们传入的实参,也就是三个序列,经过这个桶的筛选。然后放到这个模型去训练啊,那么这个模型就会被训练好。到后面,我们可以把我们这个模型保存在model里面去。模型参数195M。做桶的目的就是节约计算资源。

2 项目的主要过程

前提是一问一答,情景对话,不是多轮对话(比较难,但是热门领域)

整个框架第一步:做语料

先拿到一个文件,命名为.conv(只要不命名那几个特殊的,word等)。输入目录是db,输出目录是bucket_dbs,不存在则新建目录。

测试的时候,先在控制台输入一句话,然后将这句话通过正反向字典Ids化,然后去桶里面找对应的回答的每一个字,然后将输出通过反向字典转化为汉字。

2.1 数据清洗、预处理

读取整个语料库,去掉E、M和空格,还原成原始文本。创建conversion.db,conversion表,两个字段。每取完1000组对话,插入依次数据库,批量提交,通过cursor.commit.

在这里插入图片描述

2.2 分桶

从总的conversion.db中分桶,指定输入目录db, 输出目录bucket_dbs.

检测文字有效性,循环遍历,依次记录问题答案,每积累到1000次,就写入数据库。

        for ask, answer in tqdm(ret, total=total):if is_valid(ask) and is_valid(answer):for i in range(len(buckets)):encoder_size, decoder_size = buckets[i]if len(ask) <= encoder_size and len(answer) < decoder_size:word_count.update(list(ask))word_count.update(list(answer))wait_insert.append((encoder_size, decoder_size, ask, answer))if len(wait_insert) > 10000000:wait_insert = _insert(wait_insert)break

将字典维度6865未,投影到100维,也就是每个字是由100维的向量组成的。后面的隐藏层的神经元的个数是512,也就是维度。

句子长度超过桶长,就截断或直接丢弃。

四个桶是在read_bucket_dbs()读取的方法中创建的,读桶文件的时候,实例化四个桶对象。

2.3 训练

先读取json字典,加上pad等四个标记。

lstm有两层,attention在解码器的第二层,因为第二层才是lstm的输出,用两层提取到的特征越好。

num_sampled=512, 分批softmax的样本量(

训练和测试差不多,测试只前向传播,不反向更新

3 项目的整体结构

s2s.py:相当于main函数,让代码运行起来
里面有train()、test()、test_bleu()和create_model()四个方法,还有FLAGS成员变量,
相当于静态成员变量 public static final string

decode_conv.py和data_utils.py:是数据处理

s2s_model.py:
里面放的是模型
里面有init()、step()、get_batch_data()和get_batch()四个方法。构造方法传入构造方法的参数,搭建S2SModel框架,然后sampled_loss()和seq2seq_f()两个方法

data_utils.py:
读取数据库中的文件,并且构造正反向字典。把语料分成四个桶,目的是节约计算资源。先转换为db\conversation.db大的桶,再分成四个小的桶。buckets
= [ (5, 15), (10, 20), (15, 25), (20, 30)]
比如buckets[1]指的就是(10, 20),buckets[1][0]指的就是10。
bucket_id指的就是0,1,2,3

dictionary.json:
是所有数字、字母、标点符号、汉字的字典,加上生僻字,以及PAD、EOS、GO、UNK 共6865维度,输入的时候会进行词嵌入word
embedding成512维,输出时,再转化为6865维。

model:
文件夹下装的是训练好的模型。
也就是model3.data-00000-of-00001,这个里面装的就是模型的参数
执行model.saver.restore(sess, os.path.join(FLAGS.model_dir,
FLAGS.model_name))的时候,才是加载目录本地的保存的模型参数的过程,上面建立的模型是个架子,
model = create_model(sess, True),这里加载模型比较耗时,时间复杂度最高

dgk_shooter_min.conv:
是语料,形如: E
M 畹/华/吾/侄/
M 你/接/到/这/封/信/的/时/候/
decode_conv.py: 对语料数据进行预处理
config.json:是配置文件,自动生成的

4 重要的API

4.1 LSTM cells部分:

    cell = tf.contrib.rnn.BasicLSTMCell(size)cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers)对上一行的cell去做Dropout的,在外面裹一层DropoutWrapper

构建双层lstm网络,只是一个双层的lstm,不是双层的seq2seq

4.2 损失函数:

tf.nn.sampled_softmax_loss( weights=local_w_t,
b labels=labels, #真实序列值,每次一个
inputs=loiases=local_b,
cal_inputs, #预测出来的值,y^,每次一个
num_sampled=num_samples, #512
num_classes=self.target_vocab_size # 原始字典维度6865)

4.3 搭建seq2seq框架:

   tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(encoder_inputs, # tensor of input seq 30decoder_inputs, # tensor of decoder seq 30tmp_cell, #自定义的cell,可以是GRU/LSTM, 设置multilayer等num_encoder_symbols=source_vocab_size,# 编码阶段字典的维度6865num_decoder_symbols=target_vocab_size, # 解码阶段字典的维度 6865embedding_size=size, # embedding 维度,512num_heads=20, #选20个也可以,精确度会高点,num_heads就是attention机制,选一个就是一个head去连,5个就是5个头去连output_projection=output_projection,# 输出层。不设定的话输出维数可能很大(取决于词表大小),设定的话投影到一个低维向量feed_previous=do_decode,# 是否执行的EOS,是否允许输入中间cdtype=dtype)

4.4 测试部分:

self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets(
self.encoder_inputs,
self.decoder_inputs,
targets,
self.decoder_weights,
buckets,
lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=softmax_loss_function
)

4.5 评价NLP测试效果:

在nltk包里,有个接口叫bleu,可以评估测试结果,NITK是个框架

from nltk.translate.bleu_score import sentence_bleu
score = sentence_bleu(
references,#y值
list(ret),#y^
weights=(1.0,)#权重为1
)

4.6 梯度截断,防止梯度爆炸

clipped_gradients, norm = tf.clip_by_global_norm(gradients,max_gradient_norm)
tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)

通过权重梯度的总和的比率来截取多个张量的值。t_list是梯度张量, clip_norm是截取的比率,这个函数返回截取过的梯度张量和一个所有张量的全局范数

4.7 模型保存

tf.train.Saver(tf.global_variables(), write_version=tf.train.SaverDef.V2)

5 重点和难点

5.1 函数

def get_batch_data(self, bucket_dbs, bucket_id):
def get_batch(self, bucket_dbs, bucket_id, data):
def step(self,session,encoder_inputs,decoder_inputs,decoder_weights,bucket_id):

5.2 变量

batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []

6 相关参数

model = s2s_model.S2SModel(data_utils.dim,  # 6865,编码器输入的语料长度data_utils.dim,  # 6865,解码器输出的语料长度buckets,  # buckets就是那四个桶,data_utils.buckets,直接在data_utils写的一个变量,就能直接被点出来FLAGS.size, # 隐层神经元的个数512FLAGS.dropout, # 隐层dropout率,dropout不是lstm中的,lstm的几个门里面不需要dropout,没有那么复杂。是隐层的dropoutFLAGS.num_layers, # lstm的层数,这里写的是2FLAGS.max_gradient_norm, # 5,截断梯度,防止梯度爆炸FLAGS.batch_size,  # 64,等下要重新赋值,预测就是1,训练就是64FLAGS.learning_rate,    # 0.003FLAGS.num_samples,  # 512,用作负采样forward_only, #只传一次dtype){"__author__": "qhduan@memect.co","buckets": [[5, 15],[10, 20],[20, 30],[40, 50]],"size": 512,/*s2s lstm单元出来之后的,连的隐层的number unit是512*/"depth": 4,"dropout": 0.8,"batch_size": 512,/*每次往里面放多少组对话对,这个是比较灵活的。如果找一句话之间的相关性,batch_size就是这句话里面的字有多少个,如果要找上下文之间的对话,batch_size就是多少组对话*/"random_state": 0,"learning_rate": 0.0003,/*总共循环20*/"epoch": 20,"train_device": "/gpu:0","test_device": "/cpu:0"}

7 桶机制

7.1 处理数据集

语料库长度桶结构
(5, 10): 5问题长度,10回答长度
每个桶中对话数量,一问一答为一次完整对话

Analysis
(1) 设定4个桶结构,即将问答分成4个部分,每个同种存放对应的问答数据集[87, 69, 36,
8]四个桶中分别有87组对话,69组对话,36组对话,8组对话;
(2) 训练词数据集符合桶长度则输入对应值,不符合桶长度,则为空;
(3) 对话数量占比:[0.435, 0.78, 0.96, 1.0];

7.2 词向量处理seq2seq

获取问答及答案权重

参数:

  • data: 词向量列表,如[[[4,4],[5,6,8]]]
  • bucket_id: 桶编号,值取自桶对话占比

步骤:

  • 问题和答案的数据量:桶的话数buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
  • 生成问题和答案的存储器
  • 从问答数据集中随机选取问答
  • 问题末尾添加PAD_ID并反向排序
  • 答案添加GO_ID和PAD_ID
  • 问题,答案,权重批量数据
  • 批量问题
  • 批量答案
  • 答案权重即Attention机制
  • 若答案为PAD则权重设置为0,因为是添加的ID,其他的设置为1

Analysis

  • (1) 对问题和答案的向量重新整理,符合桶尺寸则保持对话尺寸,若不符合桶设定尺寸,则进行填充处理,
    问题使用PAD_ID填充,答案使用GO_ID和PAD_ID填充;

  • (2) 对问题和答案向量填充整理后,使用Attention机制,对答案进行权重分配,答案中的PAD_ID权重为0,其他对应的为1;

  • (3) get_batch()处理词向量;返回问题、答案、答案权重数据;
    返回结果如上结果:encoder_inputs, decoder_inputs, answer_weights.

7.3 处理问答及答案权重

参数:session: tensorflow 会话.encoder_inputs: 问题向量列表decoder_inputs: 回答向量列表answer_weights: 答案权重列表bucket_id: 桶编号which bucket of the model to use.forward_only: 前向或反向运算标志位
返回:一个由梯度范数组成的三重范数(如果不使用反向传播,则为无)。平均困惑度和输出

Analysis

  • (1) 根据输入的问答向量列表,分配语料桶,处理问答向量列表,并生成新的输入字典(dict), input_feed = {};

  • (2) 输出字典(dict), ouput_feed = {},根据是否使用反向传播获得参数,使用反向传播,
    output_feed存储更新的梯度范数,损失,不使用反向传播,则只存储损失;

  • (3) 最终的输出为分两种情况,使用反向传播,返回梯度范数,损失,如反向传播不使用反向传播,
    返回损失和输出的向量(用于加载模型,测试效果),如前向传播;

7.4 训练&保存模型

步骤:

  • 检查是否有已存在的训练模型

  • 有模型则获取模型轮数,接着训练

  • 没有模型则从开始训练

  • 一直训练,每过一段时间保存一次模型

  • 如果模型没有得到提升,减小learning rate

  • 保存模型

  • 使用测试数据评估模型

    global step: 500, learning rate: 0.5, loss: 2.574068747580052
    bucket id: 0, eval ppx: 14176.588030763274
    bucket id: 1, eval ppx: 3650.0026667220773
    bucket id: 2, eval ppx: 4458.454110999805
    bucket id: 3, eval ppx: 5290.083583183104
    

7.5 载入模型&测试

(1) 该聊天机器人使用bucket桶结构,即指定问答数据的长度,匹配符合的桶,在桶中进行存取数据;
(2) 该seq2seq模型使用Tensorflow时,未能建立独立标识的图结构,在进行后台封装过程中出现图为空的现象;

从main函数进入test()方法。先去内存中加载训练好的模型model,这部分最耗时,改batch_size为1,传入相关的参数。开始输入一个句子,并将它读进来,读进来之后,按照桶将句子分,按照模型输出,然后去查字典。接着在循环中输入上句话,找对应的桶。然后拿到的下句话的每个字,找概率最大的那个字的index的id输出。get_batch_data(),获取data [('天气\n', '')],也就是问答对,但是现在只有问,没有答get_batch()获取encoder_inputs=1*10,decoder_inputs=1*20 decoder_weights=1*20step()获取预测值output_logits,

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/193257.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

过滤器模式 rust和java的实现

文章目录 过滤器模式实现 过滤器模式实现javarustjavarust rust代码仓库 过滤器模式 过滤器模式&#xff08;Filter Pattern&#xff09;或标准模式&#xff08;Criteria Pattern&#xff09;是一种设计模式&#xff0c;这种模式允许开发人员使用不同的标准来过滤一组对象&…

OpenAI与微软合作,构建 ChatGPT 5 模型;10天准确天气预报

&#x1f989; AI新闻 &#x1f680; OpenAI与微软合作&#xff0c;构建 ChatGPT 5 模型&#xff0c;下一代人工智能或拥有超级智能 摘要&#xff1a;OpenAI首席执行官 Sam Altman 在接受采访时表示&#xff0c;OpenAI正在与微软合作构建下一代人工智能模型 ChatGPT 5&#x…

基于模拟退火算法的TSP问题建模求解(Python)

基于模拟退火算法的TSP问题建模求解&#xff08;Python&#xff09; 一、模拟退火算法&#xff08;Simulated Annealing Algorithm&#xff0c;SAA&#xff09;工程背景模拟退火算法用于优化问题求解原理 二、旅行商问题&#xff08;Travelling salesman problem&#xff0c;TS…

园区网络项目实战

实验背景 某写字楼备搭建一张网络供楼内企业办公使用。写字楼共6层&#xff0c;目前已有三层投入使用&#xff0c;分别 是一层会客大厅、二层行政部及总经理办公室、三层研发部和市场部。一层设有核心机房&#xff0c;其 他各楼层均有一个小房间放置网络设备。 第一步 询…

【Hello Go】Go语言运算符

Go语言运算符 算术运算符关系运算符逻辑运算符位运算符赋值运算符其他运算符运算符优先级 算术运算符 如果之前没有其他语言基础的小伙伴可以参考下我之前写的C语言运算符讲解 这里主要讲解下Go和C运算符的不同点 – 运算符 Go语言中只有后置 和后置– var a int 5a--fmt.P…

竞赛选题 深度学习的口罩佩戴检测 - opencv 卷积神经网络 机器视觉 深度学习

文章目录 0 简介1 课题背景&#x1f6a9; 2 口罩佩戴算法实现2.1 YOLO 模型概览2.2 YOLOv32.3 YOLO 口罩佩戴检测实现数据集 2.4 实现代码2.5 检测效果 3 口罩佩戴检测算法评价指标3.1 准确率&#xff08;Accuracy&#xff09;3.2 精确率(Precision)和召回率(Recall)3.3 平均精…

【2021集创赛】Arm杯一等奖作品—基于 Cortex-M3 内核 SOC 的动目标检测与跟踪系统

本作品介绍参与极术社区的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~ 团队介绍 参赛单位&#xff1a;北京理工大学 队伍名称&#xff1a;飞虎队 指导老师&#xff1a;李彬 参赛杯赛&#xff1a;Arm杯 参赛人员&#xff1a;余裕鑫 胡涵谦 刘鹏昀 获奖情况&#xff1…

Python数据容器(字典)

字典 1.字典的定义2.字典数据的获取3.字典的嵌套4.嵌套字典的内容获取5.字典的常用操作6.常用操作总结7.遍历字典8.练习 1.字典的定义 同样使用{}&#xff0c;不过存储的元素是一个一个的&#xff1a;键值对&#xff0c;语法如下 # 定义字典字面量 {key:value,key:value,...,…

邮件钓鱼-邮件来源伪造-SPF绕过-setoolkitgohishswaks钓鱼

0x00 SPF简介 SPF即发送方策略框架&#xff0c;某种邮件服务器会有自己的SPF策略设定&#xff0c;可以设定SPF为只允许某些主机发送邮件等&#xff0c;当设定后第三方就无法伪造成邮件服务器的管理员对用户下发邮件。 是否存在SPF的验证&#xff1a; linux下&#xff1a;dig…

day17_多线程基础

今日内容 零、 复习昨日 一、作业 二、进程与线程 三、创建线程 四、线程的API 一、复习 IO流的分类 方向: 输入,输出类型: 字节(XxxStream),字符(XxxReader,XxxWriter)字节输入流类名: FileInputStream字节输出流类名: FileOutputStream字符输入流类名: FileReader字符输出流类…

bclinux aarch64 ceph 14.2.10 对象存储 http网关 CEPH OBJECT GATEWAY Civetweb

相关内容 bclinux aarch64 ceph 14.2.10 文件存储 Ceph File System, 需要部署mds&#xff1a; ceph-deploy mds-CSDN博客 ceph-deploy bclinux aarch64 ceph 14.2.10【3】vdbench fsd 文件系统测试-CSDN博客 ceph-deploy bclinux aarch64 ceph 14.2.10【2】vdbench rbd 块设…

RabbitMQ之消息应答和持久化

文章目录 前言一、消息应答1.概念2.自动应答3.消息应答方法4.Multiple 的解释5.消息自动重新入队6.消息手动应答代码7.手动应答效果演示 二、RabbitMQ持久化1.概念2.队列如何实现持久化3.消息实现持久化4.不公平分发5.预取值 总结 前言 在RabbitMQ中&#xff0c;我们的消费者在…

Django之模版层

文章目录 模版语法传值模版语法传值特性模版语法标签语法格式if模板标签for模板标签with起别名 模版语法过滤器常用过滤器 自定义过滤器、标签、inclusion_tag自定义过滤器自定义标签自定义inclusion_tag 模版导入模版继承 模版语法传值 模板层三种语法{{}}:主要与数据值相关{%…

【LLM】0x00 大模型简介

0x00 大模型简介 个人问题学习笔记大模型简介LLM 的能力&#xff1a;LLM 的特点&#xff1a; LangChain 简介LangChain 核心组件 小结参考资料 个人问题 1、大模型是什么&#xff1f; 2、ChatGPT 在大模型里是什么&#xff1f; 3、大模型怎么用&#xff1f; 带着问题去学习&a…

Linux Centos 根目录扩展分区(保级教程)

Centos 根目录扩展分区 1. 扩展背景2.列出磁盘信息3. 对磁盘进行分区4. 重启Linux5. 将PV加入卷组centos并分区6.查看分区结果 1. 扩展背景 虚拟机初始分配20G内存&#xff0c;扩容到80G。 2.列出磁盘信息 可以得知容量信息以及即将创建的PV路径&#xff08;通常为“/dev/s…

2024上海国际智能驾驶技术展览会(自动驾驶展)

2024上海国际智能驾驶技术展览会 2024 Shanghai International Autonomous driving Expo 时间&#xff1a;2024年3月26-28日 地点&#xff1a;上海跨国采购会展中心 随着科技的飞速发展&#xff0c;智能驾驶已经成为了汽车行业的重要趋势。在这个时代背景下&#xff0c;汽车不…

Qt 线程串口

文章目录 ui设置创建线程函数初始串口run函数接收发送数据读取数据处理读取的数据写入数据写入启动的命令 主线程 ui设置 创建线程函数 #include <QObject> #include <QThread> #include <QSerialPort> #include <QSerialPortInfo>class SerialPort :…

微信小程序广告banner、滚动屏怎么做?

使用滑块视图容器swiper和swiper-item可以制作滚动屏&#xff0c;代码如下&#xff1a; wxml: <swiper indicator-dots indicator-color"rgba(255,255,255,0.5)" indicator-active-color"white" autoplay interval"3000"><swiper-ite…

Unity Meta Quest 一体机开发(六):HandGrabInteractor 和 HandGrabInteractable 知识点

文章目录 &#x1f4d5;教程说明&#x1f4d5;HandGrabInteractor⭐HandGrabAPI⭐HandWristPoint⭐GripPoint⭐PinchPoint⭐PinchArea⭐HandGrabVisual⭐HandGrabGlow &#x1f4d5;HandGrabInteractable⭐Support Grab Type⭐Pinch Grab Rules 和 Palm Grab Rules⭐Unselect M…

【Java 进阶篇】JQuery 案例:全选全不选,为选择添彩

在前端的舞台上&#xff0c;用户交互是一场精彩的表演&#xff0c;而全选全不选的功能则是其中一段引人入胜的剧情。通过巧妙运用 JQuery&#xff0c;我们可以为用户提供便捷的全选和全不选操作&#xff0c;让页面更富交互性。本篇博客将深入探讨 JQuery 中全选全不选的实现原理…