Docker与VM虚拟机的区别以及Docker的特点

01、本质上的区别

VM(VMware)在宿主机器、宿主机器操作系统的基础上创建虚拟层、虚拟化的操作系统、虚拟化的仓库,然后再安装应用;

Container(Docker容器),在宿主机器、宿主机器操作系统上创建Docker引擎,在引擎的基础上再安装应用。

那么问题来了,没有操作系统,怎么运行程序?

可以在Docker中创建一个ubuntu的镜像文件,这样就能将ubuntu系统集成到Docker中,运行的应用就都是ubuntu的应用。

02、使用上的区别

Size

  • 虚拟机中ubuntu所占内存:

  • Docker容器中ubuntu镜像文件所占内存:

01、Startup

Docker在宿主机器的操作系统上创建Docker引擎,直接在宿主主机的操作系统上调用硬件资源,而不是虚拟化操作系统和硬件资源,所以操作速度快。

这个其实安装一个ubuntu的虚拟机和拉取一个Docker的ubuntu镜像文件,运行一下就知道了,区别很明显,虚拟机开一下大概得2分多钟,而Docker只需要2秒钟。

02、Integration

首先,Docker可以让你非常容易和方便地以“容器化”的方式去部署应用。它就像集装箱一样,打包了所有依赖,再在其他服务器上部署很容易,不至于换服务器后发现各种配置文件散落一地,这样就解决了编译时依赖和运行时依赖的问题。

其次,Docker的隔离性使得应用在运行时就像处于沙箱中,每个应用都认为自己是在系统中唯一运行的程序,就像刚才例子中,A依赖于python 2.7,同时A还依赖于B,但B却依赖于Python 3,这样我们可以在系统中部署一个基于Python 2.7的容器和一个基于Python 3的容器,这样就可以很方便地在系统中部署多种不同环境来解决依赖复杂度的问题。这里有些朋友可能会说,虚拟机也可以解决这样的问题。诚然,虚拟化确实可以做到这一点,但是这需要硬件支持虚拟化及开启BIOS中虚拟化相关的功能,同时还需要在系统中安装两套操作系统,虚拟机的出现是解决了操作系统和物理机的强耦合问题。但Docker就轻量化很多,只需内核支持,无需硬件和BIOS的强制要求,可以轻松迅速地在系统上部署多套不同容器环境,容器的出现解决了应用和操作系统的强耦合问题。

正因为Docker是以应用为中心,镜像中打包了应用及应用所需的环境,一次构建,处处运行。这种特性完美解决了传统模式下应用迁移后面临的环境不一致问题。同时,Docker压根不管内部应用怎么启动,你自己爱咋来咋来,我们用docker start或run作为统一标准。这样应用启动就标准化了,不需要再根据不同应用而记忆一大串不同启动命令。

基于Docker的特征,现在常见的利用Docker进行持续集成的流程如下:
开发者提交代码
触发镜像构建
构建镜像上传至私有仓库
镜像下载至执行机器
镜像运行

其基本拓扑结构如图1所示

熟悉Docker的朋友都知道,Docker启动非常快,可以说是秒启。在上述的五步中,1和5的耗时较短,整个持续集成主要耗时集中在中间的3个步骤,也就是docker build、docker push、docekr pull这样还是无法达到顺滑的极致要求,下来我们来分析下build、push、pull的耗时和解决方法:

03、docker build

网络优化

dockerhub的官方镜像在国外,由于众所周知的原因,在国内进行构建时网络会是很大的瓶颈,甚至某些公司的环境是无Internet连接的。

在这种情况下,建议使用国内的镜像源,或者自己搭建私有仓库,保存项目需要的基础镜像,把构建过程中的网络传输都控制在国内或者内网,这样就不用再考虑网络方面的问题。

使用 .dockerignore文件

dockerignore文件的设计是为了在docker build的过程中排除不需要用到的文件以及目录,目的是为了docker build这个过程可以尽可能地快速高效以及构建出来的image没有多余的“垃圾”。

最小化镜像层数(layers)

把镜像层数减到最少,能加快容器的启动速度,但是这里也要权衡另一个问题:dockerfile的可读性。你可以把一个dockerfile写得很复杂以达到构建出最小层数的镜像,但同时你的dockerfile可读性也降低了。所以我们要在镜像层数和dockerfile可读性之间做出妥协。

04、docker push

docker registry升级到v2后加入了很多安全相关检查,在v2中的镜像的存储格式变成了gzip ,镜像在压缩过程中占用的时间也比较多。我们简单分解一下docker push的流程。

buffer to disk,将该层文件系统压缩成本地的一个临时文件;
上传文件至registry;
本地计算压缩包digest,删除临时文件,digest传给registry;
registry计算上传压缩包digest并进行校验;
registry将压缩包传输至后端存储文件系统;
重复1-5直至所有层传输完毕;
计算镜像的manifest并上传至registry重复 3-5。
这样的设计导致push会很慢,如果采用官方的dockerhub,需要考虑docker build一节中提及的网络方面影响,dockerhub公有镜像库还需考虑安全方面的因素。

同时docker和registry设置了过多的安全防范措施(如双向证书认证等),主要是为了防止在公有云的环境下镜像的伪造和越权获取。但是在一个可信的环境内,如果build和push过程都是自己掌控,很多措施都是多余的。

05、docker pull

docker pull 镜像的速度对服务启动速度至关重要,好在registry v2后可以并行pull了,速度有了很大改善。但是依然有一些小的问题影响了启动的速度:

下载镜像和解压镜像是串行的;

串行解压,由于v2都是gzip要解压,尽管并行下载了还是串行解压,内网的话解压时间比网络传输都要长;

和registry通信, registry在pull的过程中并不提供下载内容只是提供下载url和鉴权,这一部分加长了网络传输,而且一些metadata还是要去后端存储获取,延时还是有一些的。

通过刚才的分析,大家可以看到,其实docker build、push、pull其实主要耗时是在网络传输(主要)及安全防范措施(轻微)上,整个传输过程甚至大大超过了其他所有步骤的时间;这样可以借助我们的AppHouse方便的搭建本地企业级镜像仓库,将网络传输转移至内网,同时完全掌控了 build、push和pull的过程,这样提高效率的同时也解决了安全问题,可谓一举两得。
经过Docker、AppHouse的帮助,我们距极致追求的如丝般顺滑的持续集成目标只有一步之遥,Docker解决了依赖和环境问题,AppHouse解决了镜像安全快速传输的问题,接下来就是容器的部署和管理问题。

Docker实现了底层技术的创新,它的出现将开发者从与系统的纠缠中释放了出来,但是阻碍企业使用Docker的问题是容器的大规模部署、管理问题和缺少企业级容器工具及系统。

镜像创建完成后,需要把它发布到测试和生产环境。因为Docker占用资源小,在单个服务器上部署成百上千个容器也不足为奇。这个阶段中如何更合理地使用Docker也是一个难点,开发团队需要考虑如何打造一个可伸缩扩展的分发环境。

AppSoar提供人性化的Web管理界面,丰富的Compose文件格式和功能完备的API接口,通过Compose实现以十分简单的文件描述复杂的应用结构,让部署变得更简单。并且,AppSoar还提供丰富的企业应用商店,让一键创建服务成为可能。这样可以快速搭建应用场景,开发者只需要关注开发本身即可。

打通最后一个环节后,整个持续集成平台架构演进到如图2所示。

03、Docker特点

上手快

用户只需要几分钟,就可以把自己的程序“Docker 化”。Docker 依赖于“写时复制” (copy-on-write)模型,使修改应用程序也非常迅速,可以说达到“随心所致,代码即改” 的境界。

随后,就可以创建容器来运行应用程序了。大多数 Docker 容器只需要不到 1 秒中即可 启动。由于去除了管理程序的开销,Docker 容器拥有很高的性能,同时同一台宿主机中也可以运行更多的容器,使用户尽可能的充分利用系统资源。

职责的逻辑分类

使用 Docker,开发人员只需要关心容器中运行的应用程序,而运维人员只需要关心如何管理容器。Docker设计的目的就是要加强开发人员写代码的开发环境与应用程序要部署的生产环境一致性。从而降低那种“开发时一切正常,肯定是运维的问题(测试环境都是正 常的,上线后出了问题就归结为肯定是运维的问题)”

快速高效的开发生命周期

Docker 的目标之一就是缩短代码从开发、测试到部署、上线运行的周期,让你的应用程序具备可移植性,易于构建,并易于协作。(通俗一点说,Docker 就像一个盒子,里面可以装很多物件,如果需要这些物件的可以直接将该大盒子拿走,而不需要从该盒子中一件 件的取。)

鼓励使用面向服务的架构

Docker 还鼓励面向服务的体系结构和微服务架构。Docker 推荐单个容器只运行一个应用程序或进程,这样就形成了一个分布式的应用程序模型,在这种模型下,应用程序或者服务都可以表示为一系列内部互联的容器,从而使分布式部署应用程序,扩展或调试应用程序 都变得非常简单,同时也提高了程序的内省性。(当然,可以在一个容器中运行多个应用程序)

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/195430.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sqli-labs(Less-4) extractvalue闯关

extractvalue() - Xpath类型函数 1. 确认注入点如何闭合的方式 2. 爆出当前数据库的库名 http://127.0.0.1/sqlilabs/Less-4/?id1") and extractvalue(1,concat(~,(select database()))) --3. 爆出当前数据库的表名 http://127.0.0.1/sqlilabs/Less-4/?id1") …

Prometheus+Grafana环境搭建(window)

PrometheusGrafana环境搭建 1:配置Prometheus 1.1: 下载Prometheus安装包 官方下载地址 找到对应的win版本进行下载并解压 1.2 下载Window数据采集 官方下载地址 下载以管理员运行,安装成功后在服务里会出现一个"windows_exporter"采集…

HCL设备启动失败——已经解决

摸索了一个多小时,终于搞定了,首先HCL这款软件是需要安装Oracle VM Visual Box的,小伙伴们安装的时候记得点击安装Visual Box; 安装完后显示设备不能启动,然后我根据这个 HCL模拟器中Server设备启动失败的解决办法_hc…

【原创】java+swing+mysql校园活动管理系统设计与实现

前言: 本文介绍了一个校园活动管理系统的设计与实现。该系统基于JavaSwing技术,采用C/S架构,使用Java语言开发,以MySQL作为数据库。系统实现了活动发布、活动报名、活动列表查看等功能,方便了校园活动的发布和管理&am…

虚幻C++ day5

角色状态的常见机制 创建角色状态设置到UI上 在MainPlayer.h中新建血量,最大血量,耐力,最大耐力,金币变量,作为角色的状态 //主角状态UPROPERTY(EditDefaultsOnly, BlueprintReadOnly, Category "Playe Stats&…

Python in Visual Studio Code 2023年11月发布

排版:Alan Wang 我们很高兴地宣布 Visual Studio Code 的 Python 和 Jupyter 扩展将于 2023 年 11 月发布! 此版本包括以下公告: 改进了使用 Shift Enter 在终端中运行当前行弃用内置 linting 和格式设置功能对 Python linting 扩展的改进重…

Appium移动自动化测试--安装Appium

Appium 自动化测试是很早之前就想学习和研究的技术了,可是一直抽不出一块完整的时间来做这件事儿。现在终于有了。 反观各种互联网的招聘移动测试成了主流,如果再不去学习移动自动化测试技术将会被淘汰。 web自动化测试的路线是这样的:编程语…

asp.net core mvc之 RAZOR共享指令和标签助手 TagHelpers

一、RAZOR共享指令 RAZOR共享指令:在视图中导入命名空间,执行依赖注入。 RAZOR共享指令是写在 Views目录下的 _ViewImports.cshtml 文件 支持指令如下: addTagHelper 增加标签助手 removeTagHelper 移除标签助手 tagHelperPrefix 标签助手…

防抖-节流-深拷贝-事件总线

一、防抖与节流 1.认识防抖与节流函数 防抖和节流的概念其实最早并不是出现在软件工程中,防抖是出现在电子元件中,节流出现在流体流动中 而JavaScript是事件驱动的,大量的操作会触发事件,加入到事件队列中处理。而对于某些频繁…

【Java 进阶篇】揭秘 JQuery 广告显示与隐藏:打造令人惊艳的用户体验

在当今互联网时代,广告已经成为网页中不可忽视的一部分。然而,如何通过巧妙的交互设计,使广告既能吸引用户的眼球,又不会给用户带来干扰,成为了许多前端开发者需要思考的问题之一。在这篇博客中,我们将深入…

长短期记忆(LSTM)与RNN的比较:突破性的序列训练技术

长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。 Why LSTM提出的动机是为了解…

创邻科技亮相ISWC 2023,国际舞台见证知识图谱领域研究突破

近日,第22届国际语义网大会 ISWC 2023 在雅典希腊召开,通过线上线下的形式,聚集了全球的顶级研究人员、从业人员和行业专家,讨论、发展和塑造语义网和知识图谱技术的未来。创邻科技CEO张晨博士作为知识图谱行业专家受邀参会&#…

最新完美版积分商城系统-奇偶商城系统源码+独立代理后台+附搭建教程

源码简介: 最新完美版积分商城系统,网购商城系统源码,是更新的奇偶商城系统源码,它拥有独立代理后台,而且内附搭建教程。 1.演示环境:Linux Centos7以上版本 宝塔 2.Nginx 1.18.0 PHP7.0 Mysql5.6 3…

CTFd-Web题目动态flag

CTFd-Web题目动态flag 1. dockerhub注册2. dockerfile编写3. 上传到docker仓库4. 靶场配置5. 动态flag实现 1. dockerhub注册 想要把我们的web题目容器上传到docker仓库中,我们需要dockerhub官网注册一个账号,网址如下 https://hub.docker.com/2. dock…

vue-数据双向绑定原理

​🌈个人主页:前端青山 🔥系列专栏:Vue篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:vue-数据双向绑定原理 目录 虚拟DOM与Diff算法 1. 对虚拟DOM的理解? 2. 虚拟DOM的解…

解决:Error: Missing binding xxxxx\node_modules\node-sass\vendor\win32-x64-83\

一、具体报错 二、报错原因 这个错误是由于缺少 node-sass 模块的绑定文件引起的。 三、导致原因 3.1、环境发生了变化 3.2、安装过程出现问题 四、解决方法步骤: 4.1、重新构建 node-sass 模块 npm rebuild node-sass 4.2、清除缓存并重新安装依赖 npm c…

2019年12月 Scratch(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 以下程序执行后,角色面向的方向是? A:右上 B:右下 C:左上 D:左下 答案:B 面向-135度,是面向左下角,向右旋转-90度等于向左旋转90度。所以会旋转到右下角。 第2题 以下程…

【Rust】快速教程——模块mod与跨文件

前言 道尊:没有办法,你的法力已经消失,我的法力所剩无几,除非咱们重新修行,在这个世界里取得更多法力之后,或许有办法下降。——《拔魔》 \;\\\;\\\; 目录 前言跨文件mod多文件mod 跨文件mod //my_mod.rs…

ChatGPT简介及基本概念

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列点击跳转>ChatGPT和AIGC 👉关于作者 专…

栈与队列练习题

作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 ​🎂 作者介绍: 🎂🎂 🎂 🎉🎉&#x1f389…