3.6 Windows驱动开发:内核进程汇编与反汇编

在笔者上一篇文章《内核MDL读写进程内存》简单介绍了如何通过MDL映射的方式实现进程读写操作,本章将通过如上案例实现远程进程反汇编功能,此类功能也是ARK工具中最常见的功能之一,通常此类功能的实现分为两部分,内核部分只负责读写字节集,应用层部分则配合反汇编引擎对字节集进行解码,此处我们将运用capstone引擎实现这个功能。

首先是实现驱动部分,驱动程序的实现是一成不变的,仅仅只是做一个读写功能即可,完整的代码如下所示;

#include <ntifs.h>
#include <windef.h>#define READ_PROCESS_CODE CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ALL_ACCESS)
#define WRITE_PROCESS_CODE CTL_CODE(FILE_DEVICE_UNKNOWN,0x801,METHOD_BUFFERED,FILE_ALL_ACCESS)#define DEVICENAME L"\\Device\\ReadWriteDevice"
#define SYMBOLNAME L"\\??\\ReadWriteSymbolName"typedef struct
{DWORD pid;       // 进程PIDUINT64 address;  // 读写地址DWORD size;      // 读写长度BYTE* data;      // 读写数据集
}ProcessData;// MDL读取封装
BOOLEAN ReadProcessMemory(ProcessData* ProcessData)
{BOOLEAN bRet = TRUE;PEPROCESS process = NULL;// 将PID转为EProcessPsLookupProcessByProcessId(ProcessData->pid, &process);if (process == NULL){return FALSE;}BYTE* GetProcessData = NULL;__try{// 分配堆空间 NonPagedPool 非分页内存GetProcessData = ExAllocatePool(NonPagedPool, ProcessData->size);}__except (1){return FALSE;}KAPC_STATE stack = { 0 };// 附加到进程KeStackAttachProcess(process, &stack);__try{// 检查进程内存是否可读取ProbeForRead(ProcessData->address, ProcessData->size, 1);// 完成拷贝RtlCopyMemory(GetProcessData, ProcessData->address, ProcessData->size);}__except (1){bRet = FALSE;}// 关闭引用ObDereferenceObject(process);// 解除附加KeUnstackDetachProcess(&stack);// 拷贝数据RtlCopyMemory(ProcessData->data, GetProcessData, ProcessData->size);// 释放堆ExFreePool(GetProcessData);return bRet;
}// MDL写入封装
BOOLEAN WriteProcessMemory(ProcessData* ProcessData)
{BOOLEAN bRet = TRUE;PEPROCESS process = NULL;// 将PID转为EProcessPsLookupProcessByProcessId(ProcessData->pid, &process);if (process == NULL){return FALSE;}BYTE* GetProcessData = NULL;__try{// 分配堆GetProcessData = ExAllocatePool(NonPagedPool, ProcessData->size);}__except (1){return FALSE;}// 循环写出for (int i = 0; i < ProcessData->size; i++){GetProcessData[i] = ProcessData->data[i];}KAPC_STATE stack = { 0 };// 附加进程KeStackAttachProcess(process, &stack);// 分配MDL对象PMDL mdl = IoAllocateMdl(ProcessData->address, ProcessData->size, 0, 0, NULL);if (mdl == NULL){return FALSE;}MmBuildMdlForNonPagedPool(mdl);BYTE* ChangeProcessData = NULL;__try{// 锁定地址ChangeProcessData = MmMapLockedPages(mdl, KernelMode);// 开始拷贝RtlCopyMemory(ChangeProcessData, GetProcessData, ProcessData->size);}__except (1){bRet = FALSE;goto END;}// 结束释放MDL关闭引用取消附加
END:IoFreeMdl(mdl);ExFreePool(GetProcessData);KeUnstackDetachProcess(&stack);ObDereferenceObject(process);return bRet;
}NTSTATUS DriverIrpCtl(PDEVICE_OBJECT device, PIRP pirp)
{PIO_STACK_LOCATION stack;stack = IoGetCurrentIrpStackLocation(pirp);ProcessData* ProcessData;switch (stack->MajorFunction){case IRP_MJ_CREATE:{break;}case IRP_MJ_CLOSE:{break;}case IRP_MJ_DEVICE_CONTROL:{// 获取应用层传值ProcessData = pirp->AssociatedIrp.SystemBuffer;DbgPrint("进程ID: %d | 读写地址: %p | 读写长度: %d \n", ProcessData->pid, ProcessData->address, ProcessData->size);switch (stack->Parameters.DeviceIoControl.IoControlCode){// 读取函数case READ_PROCESS_CODE:{ReadProcessMemory(ProcessData);break;}// 写入函数case WRITE_PROCESS_CODE:{WriteProcessMemory(ProcessData);break;}}pirp->IoStatus.Information = sizeof(ProcessData);break;}}pirp->IoStatus.Status = STATUS_SUCCESS;IoCompleteRequest(pirp, IO_NO_INCREMENT);return STATUS_SUCCESS;
}VOID UnDriver(PDRIVER_OBJECT driver)
{if (driver->DeviceObject){UNICODE_STRING SymbolName;RtlInitUnicodeString(&SymbolName, SYMBOLNAME);// 删除符号链接IoDeleteSymbolicLink(&SymbolName);IoDeleteDevice(driver->DeviceObject);}
}NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{NTSTATUS status = STATUS_SUCCESS;PDEVICE_OBJECT device = NULL;UNICODE_STRING DeviceName;DbgPrint("[LyShark] hello lyshark.com \n");// 初始化设备名RtlInitUnicodeString(&DeviceName, DEVICENAME);// 创建设备status = IoCreateDevice(Driver, sizeof(Driver->DriverExtension), &DeviceName, FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPEN, FALSE, &device);if (status == STATUS_SUCCESS){UNICODE_STRING SymbolName;RtlInitUnicodeString(&SymbolName, SYMBOLNAME);// 创建符号链接status = IoCreateSymbolicLink(&SymbolName, &DeviceName);// 失败则删除设备if (status != STATUS_SUCCESS){IoDeleteDevice(device);}}// 派遣函数初始化Driver->MajorFunction[IRP_MJ_CREATE] = DriverIrpCtl;Driver->MajorFunction[IRP_MJ_CLOSE] = DriverIrpCtl;Driver->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DriverIrpCtl;// 卸载驱动Driver->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

上方的驱动程序很简单其中的关键部分已经做好了备注,接下来才是本节课的重点,让我们开始了解一下Capstone这款反汇编引擎吧!

3.6.1 内存反汇编的应用

Capstone 是一款轻量级、多平台、多架构的反汇编引擎,旨在成为二进制分析和反汇编的终极工具。它支持多种平台和架构的反汇编,包括x86、ARM、MIPS等,并且可以轻松地集成到各种二进制分析工具中。Capstone的主要优点是它易于使用和快速的反汇编速度,而且由于其开源和活跃的社区支持,可以很容易地更新和维护。因此,Capstone被广泛用于二进制分析、安全研究和反汇编工作中。

  • 反汇编引擎GitHub地址:https://github.com/capstone-engine

这款反汇编引擎如果你想要使用它,则第一步就是调用cs_open()打开一个句柄,这个打开功能的函数原型如下所示;

cs_err cs_open(cs_arch arch,cs_mode mode,csh *handle
);
  • 参数 arch:指定架构类型,例如 CS_ARCH_X86 表示为 x86 架构。
  • 参数 mode:指定模式,例如 CS_MODE_32 表示为 32 位模式。
  • 参数 handle:打开的句柄,用于后续对引擎的调用。由于其是传递指针的方式,因此需要先分配好该指针的内存。函数执行成功后,该句柄将被填充,可以用于后续的反汇编操作。

函数cs_open()Capstone反汇编引擎提供的,它用于初始化Capstone库并打开一个句柄,以便进行后续的反汇编操作。该函数有三个参数,分别是架构类型、执行模式和指向句柄的指针。

具体地说,第一个参数CS_ARCH_X86指定了反汇编的架构类型,这里表示为Windows平台;第二个参数CS_MODE_32CS_MODE_64则指定了反汇编的执行模式,即32位模式或64位模式;第三个参数则是指向一个Capstone库句柄的指针,通过该指针可以进行后续的反汇编操作。

打开句柄后,我们可以使用其他的Capstone函数进行反汇编操作,比如cs_disasm()函数用于对二进制代码进行反汇编,反汇编后的结果可以用于分析和理解程序的行为。最后,我们还需要使用cs_close()函数关闭打开的句柄以释放资源。

第二步也是最重要的一步,调用cs_disasm()反汇编函数,函数返回实际反汇编的指令数,或者如果发生错误,则返回0。该函数的原型如下所示;

size_t cs_disasm(csh handle, const uint8_t *code, size_t code_size, uint64_t address, size_t count, cs_insn *insn);

其中各参数的含义为:

  • 参数 handle:要使用的Capstone引擎的句柄,指定dasm_handle反汇编句柄
  • 参数 code:要反汇编的二进制代码的指针,定你要反汇编的数据集或者是一个缓冲区
  • 参数 code_size:要反汇编的二进制代码的大小(以字节为单位),指定你要反汇编的长度64
  • 参数 address:要反汇编的二进制代码在内存中的地址(用于计算跳转目标地址),输出的内存地址起始位置 0x401000
  • 参数 count:要反汇编的指令数量限制。如果设置为0,则表示没有数量限制,将会反汇编所有有效的指令
  • 参数 insn:用于存储反汇编结果的结构体数组。它是一个输出参数,由调用者分配内存。用于输出数据的一个指针

如上所示的cs_open()以及cs_disasm()两个函数如果能搞明白,那么反汇编完整代码即可写出来了,根据如下流程实现;

  • 创建一个句柄 handle,用于连接到驱动程序。
  • 定义 ProcessData 结构体,包含需要读取的进程 ID、起始地址、读取的字节数以及存储读取结果的 BYTE 数组。
  • 使用 DeviceIoControl() 函数从指定进程读取机器码,将结果存储到 data 结构体的 data 字段中。
  • 使用 cs_open() 函数打开 Capstone 引擎的句柄 dasm_handle,指定了架构为 x86 平台,模式为 32 位。
  • 使用 cs_disasm() 函数将 data 结构体中的机器码进行反汇编,将结果存储到 insn 数组中,同时返回反汇编指令的数量 count。
  • 循环遍历 insn 数组,将每个反汇编指令的地址、长度、助记符和操作数打印出来。
  • 使用 cs_free() 函数释放 insn 数组占用的内存。
  • 使用 cs_close() 函数关闭 Capstone 引擎的句柄 dasm_handle。
  • 关闭连接到驱动程序的句柄 handle

根据如上实现流程,我们可以写出如下代码片段;

#define _CRT_SECURE_NO_WARNINGS
#include <Windows.h>
#include <iostream>
#include <inttypes.h>
#include <capstone/capstone.h>#pragma comment(lib,"capstone64.lib")#define READ_PROCESS_CODE CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ALL_ACCESS)
#define WRITE_PROCESS_CODE CTL_CODE(FILE_DEVICE_UNKNOWN,0x801,METHOD_BUFFERED,FILE_ALL_ACCESS)typedef struct
{DWORD pid;UINT64 address;DWORD size;BYTE* data;
}ProcessData;int main(int argc, char* argv[])
{// 连接到驱动HANDLE handle = CreateFileA("\\??\\ReadWriteSymbolName", GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);ProcessData data;DWORD dwSize = 0;// 指定需要读写的进程data.pid = 6932;data.address = 0x401000;data.size = 64;// 读取机器码到BYTE字节数组data.data = new BYTE[data.size];DeviceIoControl(handle, READ_PROCESS_CODE, &data, sizeof(data), &data, sizeof(data), &dwSize, NULL);for (int i = 0; i < data.size; i++){printf("0x%02X ", data.data[i]);}printf("\n");// 开始反汇编csh dasm_handle;cs_insn *insn;size_t count;// 打开句柄if (cs_open(CS_ARCH_X86, CS_MODE_32, &dasm_handle) != CS_ERR_OK){return 0;}// 反汇编代码count = cs_disasm(dasm_handle, (unsigned char *)data.data, data.size, data.address, 0, &insn);if (count > 0){size_t index;for (index = 0; index < count; index++){/*for (int x = 0; x < insn[index].size; x++){printf("机器码: %d -> %02X \n", x, insn[index].bytes[x]);}*/printf("地址: 0x%"PRIx64" | 长度: %d 反汇编: %s %s \n", insn[index].address, insn[index].size, insn[index].mnemonic, insn[index].op_str);}cs_free(insn, count);}cs_close(&dasm_handle);getchar();CloseHandle(handle);return 0;
}

通过驱动加载工具加载WinDDK.sys然后在运行本程序,你会看到正确的输出结果,反汇编当前位置处向下64字节。

3.6.2 内存汇编的应用

实现了反汇编接着就需要讲解如何对内存进行汇编操作,汇编引擎这里采用了XEDParse该引擎小巧简洁,著名的x64dbg就是在运用本引擎进行汇编替换的,XEDParse 是一个开源的汇编引擎,用于将汇编代码转换为二进制指令。它基于Intel的XED库,并提供了一些易于使用的接口。

  • 汇编引擎GitHub地址:https://github.com/x64dbg/XEDParse

一般而言,再进行汇编转换之前需要做如下几个步骤的工作;

1.定义xed_state_t结构体,该结构体包含有关目标平台的信息,例如处理器架构和指令集。可以使用xed_state_zero()函数来初始化该结构体。

xed_state_t state;
xed_state_zero(&state);
state.mmode = XED_MACHINE_MODE_LONG_64;
state.stack_addr_width = XED_ADDRESS_WIDTH_64b;

2.定义xed_error_enum_t类型的变量来接收转换过程中可能出现的错误信息。

xed_error_enum_t error = XED_ERROR_NONE;

3.定义xed_encoder_request_t结构体,该结构体包含要转换的汇编指令的信息,例如操作码和操作数。

xed_encoder_request_t request;
xed_encoder_request_zero_set_mode(&request, &state);
request.iclass = XED_ICLASS_MOV;
request.operand_order[0] = 0;
request.operand_order[1] = 1;
request.operands[0].name = XED_REG_RAX;
request.operands[1].name = XED_REG_RBX;

4.使用XEDParseAssemble()函数将汇编代码转换为二进制指令,并将结果存储在xed_uint8_t类型的数组中。此函数返回转换后的指令长度。

xed_uint8_t binary[15];
xed_uint_t length = XEDParseAssemble(&request, binary, sizeof(binary), &error);
if (error != XED_ERROR_NONE) {// handle error
}

5.使用转换后的二进制指令进行后续操作。

typedef int (*func_t)(void);
func_t func = (func_t)binary;
int result = func();

在本次转换流程中我们只需要向XEDParseAssemble()函数传入一个规范的结构体即可完成转换,通过向XEDPARSE结构传入需要转换的指令,并自动转换为机器码放入到data.data堆中,实现核心代码如下所示;

#define _CRT_SECURE_NO_WARNINGS
#include <Windows.h>
#include <iostream>extern "C"
{
#include "D:/XEDParse/XEDParse.h"
#pragma comment(lib, "D:/XEDParse/XEDParse_x64.lib")
}using namespace std;#define READ_PROCESS_CODE CTL_CODE(FILE_DEVICE_UNKNOWN,0x800,METHOD_BUFFERED,FILE_ALL_ACCESS)
#define WRITE_PROCESS_CODE CTL_CODE(FILE_DEVICE_UNKNOWN,0x801,METHOD_BUFFERED,FILE_ALL_ACCESS)typedef struct
{DWORD pid;UINT64 address;DWORD size;BYTE* data;
}ProcessData;int main(int argc, char* argv[])
{// 连接到驱动HANDLE handle = CreateFileA("\\??\\ReadWriteSymbolName", GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);ProcessData data;DWORD dwSize = 0;// 指定需要读写的进程data.pid = 6932;data.address = 0x401000;data.size = 0;XEDPARSE xed = { 0 };xed.x64 = FALSE;// 输入一条汇编指令并转换scanf_s("%llx", &xed.cip);gets_s(xed.instr, XEDPARSE_MAXBUFSIZE);if (XEDPARSE_OK != XEDParseAssemble(&xed)){printf("指令错误: %s\n", xed.error);}// 生成堆data.data = new BYTE[xed.dest_size];// 设置长度data.size = xed.dest_size;for (size_t i = 0; i < xed.dest_size; i++){// 替换到堆中printf("%02X ", xed.dest[i]);data.data[i] = xed.dest[i];}// 调用控制器,写入到远端内存DeviceIoControl(handle, WRITE_PROCESS_CODE, &data, sizeof(data), &data, sizeof(data), &dwSize, NULL);printf("[LyShark] 指令集已替换. \n");getchar();CloseHandle(handle);return 0;
}

通过驱动加载工具加载WinDDK.sys然后在运行本程序,你会看到正确的输出结果,可打开反内核工具验证是否改写成功。

打开反内核工具,并切换到观察是否写入了一条mov eax,1的指令集机器码,如下图已经完美写入。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/196902.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【刷题专栏—突破思维】LeetCode 138. 随机链表的复制

前言 随机链表的复制涉及到复制一个链表&#xff0c;该链表不仅包含普通的next指针&#xff0c;还包含random指针&#xff0c;该指针指向链表中的任意节点或空节点。 文章目录 原地修改链表 题目链接&#xff1a; LeetCode 138. 随机链表的复制 原地修改链表 题目介绍&#xf…

Vue3-shallowRef 和 shallowReactive函数(浅层次的响应式)

Vue3-shallowRef 和 shallowReactive函数&#xff08;浅层次的响应式&#xff09; shallowRef函数 功能&#xff1a;只给基本数据类型添加响应式。如果是对象&#xff0c;则不会支持响应式&#xff0c;层成也不会创建Proxy对象。ref和shallowRef在基本数据类型上是没有区别的…

IDEA 高分辨率卡顿优化

VM设置优化 -Dsun.java2d.uiScale.enabledfalse 增加该条设置&#xff0c;关闭高分切换 https://intellij-support.jetbrains.com/hc/en-us/articles/115001260010-Troubleshooting-IDE-scaling-DPI-issues-on-Windows​intellij-support.jetbrains.com/hc/en-us/articles/1…

【Spring】依赖注入方式,DI的方式

这里写目录标题 1. setter注入在一个类中注入引用类型在一个类中注入简单类型 2. 构造器注入在一个类中注入引用类型在一个类中注入简单类型 3. 依赖注入方式选择4. 依赖自动装配按类型注入按名称注入 5. 集合注入 1. setter注入 在一个类中注入引用类型 回顾一下之前setter注…

一个开源的汽修rbac后台管理系统项目,基于若依框架,实现了activiti工作流,附源码

文章目录 前言&源码项目参考图&#xff1a; e店邦O2O平台项目总结一、springboot1.1、springboot自动配置原理1.2、springboot优缺点1.3、springboot注解 二、rbac2.1、概括2.2、三个元素的理解 三、数据字典3.1、概括与作用3.2、怎么设计3.3、若依中使用字典 四、工作流—…

基于PI+重复控制的并网逆变系统谐波抑制策略模型

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; PI重复控制简介&#xff1a; 重复控制这一新型控制理论最早于出现日本学术界&#xff0c;其目的是为了用于解决质子加速器跟踪精度的问题。Yamamoto Y 等人提出了重复控制数学基础的内模原理&#xff0c;在控…

Filter和ThreadLocal结合存储用户id信息

ThreadLocal并不是一个Thread&#xff0c;而是Thread的局部变量。当使用ThreadLocal维护变量时&#xff0c;ThreadLocal为每个使用该变量的线程提供独立的变量副本&#xff0c;所以每一个线程都可以独立地改变自己的副本&#xff0c;而不会影响其它线程所对应的副本。ThreadLoc…

基于R语言平台Biomod2模型的物种分布建模与可视化分析

!](https://img-blog.csdnimg.cn/84e1cc8c7f9b4b6ab60903ffa17d82f0.jpeg#pic_center)

python+django+mysql个人博客项目部署(VMware部署)

目录 一、Vmware新建win7虚拟机 二、组件/软件安装 2.1 安装python3 2.2 更新pip 2.3 安装pycharm 2.4 安装django 2.5 win安装mysql 三、配置数据库 3.1 安装sqlite客户端 3.2 db.sqlite3导出为myblog.sql 3.3 Heidisql连接本地sql 四、部署项目 4.1 安装模块 4.2 尝试运行 …

Pytorch torch.normal()的用法

该函数原型如下&#xff1a; normal(mean, std, *, generatorNone, outNone) 该函数返回从单独的正态分布中提取的随机数的张量&#xff0c;该正态分布的均值是mean&#xff0c;标准差是std。 用法如下&#xff1a;我们从一个标准正态分布N&#xff5e;(0,1)&#xff0c;提取…

【Java】ArrayList和LinkedList使用不当,性能差距会如此之大!

文章目录 前言源码分析ArrayList基本属性初始化新增元素删除元素遍历元素 LinkedList实现类基本属性节点查询新增元素删除元素遍历元素 分析测试 前言 在面试的时候&#xff0c;经常会被问到几个问题&#xff1a; ArrayList和LinkedList的区别&#xff0c;相信大部分朋友都能回…

【Unity】单例模式及游戏声音管理类应用

【Unity】单例模式及游戏声音管理类应用 描述 在日常游戏项目开发中&#xff0c;单例模式是一种常用的设计模式&#xff0c;它允许在应用程序的生命周期中只创建一个对象实例&#xff0c;并提供对该实例的全局访问点。通过使用单例模式&#xff0c;可以提高代码的可维护性和可…

cesium雷达效果(脉冲圆)

cesium雷达效果(脉冲圆) 下面富有源码 实现思路 使用ellipse方法加载圆型,修改ellipse中‘material’方法重写glsl来实现当前效果 示例代码 index.html <!DOCTYPE html> <html lang="en"><head>

Redis(集合Set和有序集合SortedSet)

SET集合中的元素是不允许重复的&#xff0c;SET中的命令都是以S开头的。 使用SADD 在集合中添加元素&#xff0c;使用SMEMBERS查看元素。 当添加重复元素时&#xff0c;会返回0代表添加失败&#xff0c;查询还是就Redis一个元素。 使用SISMEMBER查询元素是否在集合中&#xff…

井盖位移监测,智能井盖智慧监测方式

在推动城市向智能化和高效化方向发展的过程中&#xff0c;科学技术发挥着至关重要的作用。智能井盖传感器作为科学技术进步的产物&#xff0c;正逐渐在城市管理过程之中崭露头角。这些看似不起眼的设备&#xff0c;虽然隐藏在井盖下方不被人们看到&#xff0c;但实实在在为人民…

Jquery 通过class名称属性,匹配元素

UI自动化过程中&#xff0c;常常需要判断某个元素是否满足条件&#xff0c;再走不通的脚本逻辑&#xff1b;、本文介绍如何通过jquery判断菜单是否展开&#xff0c;来决定是否执行菜单展开脚本&#xff1b;Jquery通过class名称属性&#xff0c;匹配元素 我们先分析&#xff0c;…

HTTP 到 HTTPS 再到 HSTS 的转变

近些年&#xff0c;随着域名劫持、信息泄漏等网络安全事件的频繁发生&#xff0c;网站安全也变得越来越重要&#xff0c;也促成了网络传输协议从 HTTP 到 HTTPS 再到 HSTS 的转变。 HTTP HTTP&#xff08;超文本传输协议&#xff09; 是一种用于分布式、协作式和超媒体信息系…

RabbitMQ 消息丢失解决 (高级发布确认、消息回退与重发、备份交换机)

目录 一、发布确认SpringBoot版本 确认机制图例&#xff1a; 代码实战&#xff1a; 代码架构图&#xff1a; 1.1交换机的发布确认 添加配置类 消息消费者 消息生产者发布消息后的回调接口 测试&#xff1a; 1.2回退消息并重发&#xff08;队列的发布确认&#xff09; …

编写程序,要求输入x的值,输出y的值。分别用(1)不嵌套的if语句(2)嵌套的if语句(3)if-else语句(4)switch语句。

编写程序&#xff0c;要求输入x的值&#xff0c;输出y的值。分别用&#xff08;1&#xff09;不嵌套的if语句&#xff08;2&#xff09;嵌套的if语句&#xff08;3&#xff09;if-else语句&#xff08;4&#xff09;switch语句。 选择结构是编程语言中常用的一种控制结构&…

适用于 Windows 的 10 个最佳视频转换器:快速转换高清视频

您是否遇到过由于格式不兼容而无法在您的设备上播放视频或电影的情况&#xff1f;您想随意播放从您的相机、GoPro 导入的视频&#xff0c;还是以最合适的格式将它们上传到媒体网站&#xff1f;您的房间里是否有一堆 DVD 光盘&#xff0c;想将它们转换为数字格式以便于播放&…