动手学深度学习——循环神经网络的简洁实现(代码详解)

文章目录

    • 循环神经网络的简洁实现
      • 1. 定义模型
      • 2. 训练与预测

循环神经网络的简洁实现

# 使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型
import torch 
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lbatch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

1. 定义模型

构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer

# 构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer
num_hiddens =256
rnn_layer = nn.RNN(len(vocab), num_hiddens)

使用张量初始化状态,形状为(隐藏层数,批量大小,隐藏单元数)

# 使用张量初始化状态,形状为(隐藏层数,批量大小,隐藏单元数)
state = torch.zeros((1, batch_size, num_hiddens))
state.shape

在这里插入图片描述
通过一个隐状态和一个输入,可以用更新后的隐状态计算输出。

# 通过一个隐状态和一个输入,可以用更新后的隐状态计算输出。
# rnn_layer的“输出”(Y)不涉及输出层的计算: 它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape

在这里插入图片描述为一个完整的循环神经网络模型定义了一个RNNModel类,rnn_layer只包含隐藏的循环层,我们还需要创建一个单独的输出层。

# 为一个完整的循环神经网络模型定义了一个RNNModel类
# rnn_layer只包含隐藏的循环层,我们还需要创建一个单独的输出层
#save
class RNNModel(nn.Module):"""循环神经网络模型"""def __init__(self, rnn_layer, vocab_size, **kwargs):super(RNNModel, self).__init__(**kwargs)self.rnn = rnn_layerself.vocab_size = vocab_sizeself.num_hiddens = self.rnn.hidden_size# 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1if not self.rnn.bidirectional:self.num_directions = 1self.linear = nn.Linear(self.num_hiddens, self.vocab_size)else:self.num_directions = 2self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)def forward(self, inputs, state):X = F.one_hot(inputs.T.long(), self.vocab_size)X = X.to(torch.float32)Y, state = self.rnn(X, state)# 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)# 它的输出形状是(时间步数*批量大小,词表大小)。output = self.linear(Y.reshape((-1, Y.shape[-1])))return output, statedef begin_state(self, device, batch_size=1):if not isinstance(self.rnn, nn.LSTM):# nn.GRU以张量作为隐状态return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device)else:# nn.LSTM以元组作为隐状态return (torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device),torch.zeros((self.num_directions * self.rnn.num_layers,batch_size, self.num_hiddens), device=device))

2. 训练与预测

在训练模型之前,基于一个具有随机权重的模型进行预测。

# 在训练模型之前,基于一个具有随机权重的模型进行预测。
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)

在这里插入图片描述
使用之前的超参数调用train_ch8,并且使用高级API训练模型

# 使用之前的超参数调用train_ch8,并且使用高级API训练模型
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197103.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#开发的OpenRA游戏之属性BodyOrientation(6)

C#开发的OpenRA游戏之属性BodyOrientation(6) 在顶层定义里会发现这个属性: ^SpriteActor: BodyOrientation: QuantizeFacingsFromSequence: RenderSprites: SpriteActor是用来定义角色的基本属性,它的第一个属性就是BodyOrientation,这个属性主要用来描述角色的身体的…

SVG的viewBox、width和height释义, 示例及代码

svg的是没有边界的,svg画布只是用于展示svg世界中某一个范围的内容,而对于超过了svg画布范围的内容,则会被遮挡。默认svg画布默认显示世界坐标下原点坐标的width*height面积的矩形视野。 ​ 我们可以通过viewBox来修改默认的显示配置&#…

Linux shell编程学习笔记27:tputs

除了stty命令,我们还可以使用tput命令来更改终端的参数和功能。 1 tput 命令的功能 tput 命令的主要功能有:移动更改光标、更改文本显示属性(如颜色、下划线、粗体),清除屏幕特定区域等。 2 tput 命令格式 tput [选…

macOS下如何使用Flask进行开发

👨🏻‍💻 热爱摄影的程序员 👨🏻‍🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻‍🏫 一位高冷无情的编码爱好者 大家好,我是全栈工…

想要精通算法和SQL的成长之路 - 摩尔投票法的运用

想要精通算法和SQL的成长之路 - 摩尔投票法的运用 前言一. 多数元素1.1 摩尔投票法 二. 多数元素II2.1 分析 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 多数元素 原题链接 1.1 摩尔投票法 简单来说,假设数组 num 的众数是 x,数组长度为n。 有…

CAS源码工程搭建记录

CAS源码工程搭建 1.下载2.gradle下载源改为阿里云,解决下载慢的问题3.解决保存 1.下载 git clone -b 5.3.x https://gitee.com/mirrors/CAS.git如果下载的是压缩包,导入工程会保存,因为builder.gradle的第20行开始有取git信息,如…

JavaWeb Day10 案例-部门管理

目录 一、查询部门 (一)需求 (二)思路 (三)查询部门 (四)、前后端联调 二、删除 (一)需求 (二)思路 (三&#xf…

复杂数据统计与R语言程序设计实验二

1、创建一个对象,并进行数据类型的转换、判别等操作,步骤如下。 ①使用命令清空工作空间,创建一个对象x,内含元素为序列:1,3,5,6,8。 ②判断对象x是否为数值型数据。 ③…

本地开发环境和服务器传输数据的几种方法

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…

Vulkan渲染引擎开发教程 一、开发环境搭建

一 安装 Vulkan SDK Vulkan SDK 就是我们要搞的图形接口 首先到官网下载SDK并安装 https://vulkan.lunarg.com/sdk/home 二 安装 GLFW 窗口库 GLFW是个跨平台的小型窗口库,也就是显示窗口,图形的载体 去主页下载并安装,https://www.glfw.…

C语言的由来与发展历程

C语言的起源可以追溯到上世纪70年代,由Dennis Ritchie在贝尔实验室开发出来。C语言的设计目标是提供一种简洁、高效、可移植的编程语言,以便于开发底层的系统软件。在那个时代,计算机技术正在迅速发展,出现了多种高级编程语言&…

html使用天地图写一个地图列表

一、效果图&#xff1a; 点击左侧地址列表&#xff0c;右侧地图跟着改变。 二、代码实现&#xff1a; 一进入页面时&#xff0c;通过body调用onLoad"onLoad()"函数&#xff0c;确保地图正常显示。 <body onLoad"onLoad()"><!--左侧代码-->…

QCheckBox样式表

1、QCheckBox选择器和指示器类型 选择器类型描述QCheckBoxQCheckBox 的默认选择器。QCheckBox::indicatorQCheckBox 的指示器,即复选框的标记部分。QCheckBox::indicator:checkedQCheckBox 选中状态下的指示器。QCheckBox::indicator:uncheckedQCheckBox 未选中状态下的指示器…

MyBatis逆向工程

新建Maven工程 <build><plugins><plugin><!--mybatis代码自动生成插件--><groupId>org.mybatis.generator</groupId><artifactId>mybatis-generator-maven-plugin</artifactId><version>1.3.6</version><confi…

2023年中职“网络安全“—Web 渗透测试②

2023年中职“网络安全“—Web 渗透测试② Web 渗透测试任务环境说明&#xff1a;1.访问http://靶机IP/web1/,获取flag值&#xff0c;Flag格式为flag{xxx}&#xff1b;2.访问http://靶机IP/web2/,获取flag值&#xff0c;Flag格式为flag{xxx}&#xff1b;3.访问http://靶机IP/web…

ClickHouse建表优化

1. 数据类型 1.1 时间字段的类型 建表时能用数值型或日期时间型表示的字段就不要用字符串&#xff0c;全String类型在以Hive为中心的数仓建设中常见&#xff0c;但ClickHouse环境不应受此影响。 虽然ClickHouse底层将DateTime存储为时间戳Long类型&#xff0c;但不建议存储Long…

[开源]基于 AI 大语言模型 API 实现的 AI 助手全套开源解决方案

原文&#xff1a;[开源]基于 AI 大语言模型 API 实现的 AI 助手全套开源解决方案 一飞开源&#xff0c;介绍创意、新奇、有趣、实用的开源应用、系统、软件、硬件及技术&#xff0c;一个探索、发现、分享、使用与互动交流的开源技术社区平台。致力于打造活力开源社区&#xff0…

【数据结构初阶】链表OJ

链表OJ 题目一&#xff1a;移除链表元素题目二&#xff1a;反转链表题目三&#xff1a;链表的中间节点题目四&#xff1a;链表中倒数第k个结点题目五&#xff1a;合并两个有序链表题目六&#xff1a;链表分割题目七&#xff1a;链表的回文结构题目八&#xff1a;相交链表题目九…

遗传算法GA-算法原理与算法流程图

本站原创文章&#xff0c;转载请说明来自《老饼讲解-BP神经网络》bp.bbbdata.com 目录 一、遗传算法流程图 1.1. 遗传算法流程图 二、遗传算法的思想与机制 2.1 遗传算法的思想 2.2 遗传算法的机制介绍 三、 遗传算法的算法流程 3.1 遗传算法的算法…