【腾讯云云上实验室-向量数据库】探索腾讯云向量数据库:全方位管理与高效利用多维向量数据的引领者

目录

  • 前言
  • 1 腾讯云向量数据库介绍
  • 2 向量数据库信息及设置
    • 2.1 向量数据库实例信息
    • 2.2 实例监控
    • 2.3 密钥管理
    • 2.4 安全组
    • 2.5 Embedding
    • 2.6 可视化界面
  • 3 可视化界面
  • 4 Embedding
    • 4.1 embedding_coll精确查询
    • 4.2 unenabled_embedding_coll精确查询
  • 5 数据库
    • 5.1 创建数据库
    • 5.2 插入数据
    • 5.3 精确检索
  • 6 应用场景
    • 6.1 大模型知识库
    • 6.2 推荐系统
    • 6.3 问答系统
    • 6.4 文本/图像检索
  • 7 总结

前言

腾讯云向量数据库(Tencent Cloud VectorDB)是一款专为存储、检索和分析多维向量数据而设计的全托管式企业级分布式数据库服务。其独特之处在于支持多种索引类型和相似度计算方法,拥有卓越的性能优势,包括高QPS(每秒查询率)、毫秒级查询延迟,以及单索引支持数亿级向量数据规模。通过简单易用的可视化界面,用户可以快速创建数据库实例,进行数据操作,执行查询操作,并配置嵌入式数据转换,提供更广泛的数据处理能力。该数据库适用于多种场景,如构建大型知识库、推荐系统、智能问答系统以及文本/图像检索任务,为企业提供了强大的工具,助力各种应用场景下的高效数据管理和智能应用实现。

1 腾讯云向量数据库介绍

腾讯云向量数据库专用于存储、检索、分析多维向量数据。该数据库支持多种索引类型和相似度计算方法,单索引支持干亿级向量规模,可支持五百万OPS及毫秒级查询延迟。腾讯云向量数据库,助您实现智能数据的快速、高效管理与应用。
在这里插入图片描述

腾讯云向量数据库具备以下几大亮点:

高性能:持百万级 QPS 及毫秒级查询延迟

大规模:单索引支持 10 亿级向量数据规模

高可用:提供多副本高可用特性,提高容灾能力

低成本:全流程平台托管,无需进行任何安装、部署、运维操作

简单易用:用户通过 API 即可快速操作数据库,开发效率高

稳定可靠:源自腾讯集团自研的向量检索引擎 OLAMA,近 40 个业务线上稳定运行。

2 向量数据库信息及设置

2.1 向量数据库实例信息

显示有关数据库实例的关键详细信息,例如实例 ID、地域、容量、配置等。
在这里插入图片描述

2.2 实例监控

实时或历史性能指标和监控功能,允许用户跟踪数据库使用情况、性能以及资源利用情况。
在这里插入图片描述

2.3 密钥管理

管理访问密钥、身份验证令牌或加密密钥,以保护数据库实例并控制访问权限。
在这里插入图片描述

2.4 安全组

定义和管理安全规则和配置,包括网络访问控制列表(ACL)或防火墙设置,以保护数据库实例。
在这里插入图片描述

2.5 Embedding

与嵌入式数据相关的配置,可能包括将非结构化数据转换为向量格式的设置,并在数据库中管理这些嵌入式数据。
在这里插入图片描述

2.6 可视化界面

以图形方式呈现数据库实例的整体状态、统计信息或其他数据,以用户友好的方式展示信息,便于快速理解和决策。
在这里插入图片描述

3 可视化界面

在这里插入图片描述

Embedding提供了将非结构化数据转换为向量数据的功能,自动将原始文本转换为向量数据并插入数据库,或者执行相似性计算,使向量数据库的使用更加简单便捷。

数据库管理方面基于向量数据库可进行在线的数据库增加、删除和管理。

集合管理涵盖了集合的创建、删除操作,以及查看集合信息和内容。

索引管理方面可进行集合索引在线查看及重建等操作。

全实例查询能够快速进行实例级的数据库和集合全实例查找和展开操作。

在数据操作方面,支持精确查询、模糊查找、更新插入、在线删除,并且支持多集合的并行操作。

这些功能集合为用户提供了更灵活、高效地管理和操作向量数据库的能力。

4 Embedding

提供将非结构化数据转换为向量数据的能力,自动将原始文本转换为向量数据后插入数据库或进行相似性计算,更简单地使用向量数据库

4.1 embedding_coll精确查询

在进行embedding_coll的精确查询时,使用JSON数据进行查询,可能包括按照特定的条件或字段,对数据库中存储的向量数据进行准确的检索。这种查询方式可以帮助用户快速找到所需的向量数据或相关信息,提供了高效、精确的搜索功能。
在这里插入图片描述

4.2 unenabled_embedding_coll精确查询

在unenabled_embedding_coll精确查询中,同样使用JSON数据对数据进行查询。这个查询操作可能是在某些特定条件下执行的,与enabled_embedding_coll相比,可能有些功能或特性处于未启用状态。这种查询可能针对某些特定集合或数据,提供了对数据库中信息的更多探索或筛选功能,使用户能够更全面地利用数据库资源。
在这里插入图片描述

5 数据库

(如图中所示)。此外,(如图中的数据插入界面展示了这一点)。

5.1 创建数据库

基于向量数据库的在线增加、删除和管理数据库是腾讯云向量数据库的关键功能之一。通过可视化界面,用户可以轻松地创建新的数据库实例。

在这里插入图片描述

5.2 插入数据

向量数据库允许用户通过JSON数据将信息插入数据库,这提供了一种灵活且可扩展的方法,使用户能够将各种数据以向量形式存储在数据库中

在这里插入图片描述

5.3 精确检索

在进行数据检索时,向量数据库提供了多种方式。用户可以通过表单形式输入搜索条件,也可以通过JSON数据进行检索
在这里插入图片描述

这种多样性的检索方式可以让用户根据不同的需求和偏好选择最适合的查询方法,无论是简单的数据查询还是更复杂的搜索需求。这种灵活性有助于用户更有效地管理数据库,以及更方便地访问和利用所存储的向量数据。

6 应用场景

6.1 大模型知识库

腾讯云向量数据库与大语言模型LLM协同使用。将企业私域数据经过文本分割和向量化后存储在向量数据库中,形成企业专属的外部知识库。这为大模型提供了提示信息,在后续检索任务中辅助生成更准确的答案。

6.2 推荐系统

推荐系统根据用户历史行为和偏好向用户推荐可能感兴趣的物品。在这种情况下,用户行为特征向量化存储在向量数据库中。系统根据用户特征进行相似度计算,并返回可能感兴趣的物品作为推荐结果。

6.3 问答系统

智能问答系统能够回答用户提出的问题,通常使用NLP服务和深度学习等技术实现。问题和答案通常被转换为向量表示,并存储在向量数据库中。问答系统可通过计算向量之间的相似度,检索最相关的问题信息并返回答案。向量数据库存储和检索相关的向量数据,提高问答系统的检索效率和准确性。

6.4 文本/图像检索

文本/图像检索任务在大规模文本/图像数据库中搜索与指定图像最相似的结果。存储在向量数据库中的文本/图像特征通过高性能索引实现高效的相似度计算,返回匹配的文本/图像结果。

7 总结

腾讯云向量数据库是一全托管的企业级分布式数据库服务,专注于多维向量数据的存储、检索和分析。该数据库支持多种索引类型和相似度计算方法,拥有高性能、大规模、高可用、低成本、简单易用等特点。通过其可视化界面,用户可以轻松管理实例信息、监控性能、进行密钥管理、设置安全组,以及使用Embedding功能将非结构化数据转换为向量数据并插入数据库。

应用场景广泛,包括构建大型知识库、推荐系统、智能问答系统以及文本/图像检索等。例如,与大语言模型配合使用可构建企业专属的知识库,推荐系统可基于用户特征向量化进行相似度计算,问答系统通过向量存储和检索提高响应速度和准确性,文本/图像检索任务可以高效搜索相似内容。腾讯云向量数据库为企业提供了强大的工具,助力各种应用场景下的高效数据管理和智能应用实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/199494.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

openGauss学习笔记-128 openGauss 数据库管理-设置透明数据加密(TDE)

文章目录 openGauss学习笔记-128 openGauss 数据库管理-设置透明数据加密(TDE)128.1 概述128.2 前提条件128.3 背景信息128.4 密钥管理机制128.5 表级加密方案128.6 创建加密表128.7 切换加密表加密开关128.8 对加密表进行密钥轮转 openGauss学习笔记-12…

2023.11.17使用flask将多个图片文件上传至服务器

2023.11.17使用flask将多个图片文件上传至服务器 实现功能: 1、同时上传多个图片文件 2、验证文件扩展名 3、显示上传文件的文件名 4、显示文件上传结果 程序结构 main.py from flask import Flask, request, jsonify, render_template import osapp Flask(__n…

C#,数值计算——插值和外推,分段线性插值(Linear_interp)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 分段线性插值 /// Piecewise linear interpolation object. /// Construct with x and y vectors, then call interp for interpolated values. /// </summary> …

矩阵的QR分解

矩阵的QR分解 GramSchmidt 设存在 B { x 1 , x 2 , … , x n } \mathcal{B}\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B{x1​,x2​,…,xn​}在施密特正交化过程中 q 1 x 1 ∣ ∣ x 1 ∣ ∣ q_1\frac{x_1}{||x_1||} q1​∣∣x1​∣∣x1​​ q k …

Apache Airflow (十一) :HiveOperator及调度HQL

&#x1f3e1; 个人主页&#xff1a;IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;加入大数据技术讨论群聊&#xff0c;获取更多大数据资料。 &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你大数据的个人空间-豹…

【Flask使用】全知识md文档,4大部分60页第3篇:状态cookie和session保持

本文的主要内容&#xff1a;flask视图&路由、虚拟环境安装、路由各种定义、状态保持、cookie、session、模板基本使用、过滤器&自定义过滤器、模板代码复用&#xff1a;宏、继承/包含、模板中特有变量和函数、Flask-WTF 表单、CSRF、数据库操作、ORM、Flask-SQLAlchemy…

汇编-loop循环指令

LOOP指令是根据ECX计数器循环&#xff0c;将语句块重复执行特定次数。 ECX自动作为计数器&#xff0c; 每重复循环一次就递减1。 语法如下所示&#xff1a; 循环目的地址必须在距离当前位置计数器的-128到127字节范围内 LOOP指令的执行有两个步骤&#xff1a; 第一步&…

Pandas数据集的合并与连接merge()方法_Python数据分析与可视化

数据集的合并与连接 merge()解析merge()的主要参数 merge()解析 merge()可根据一个或者多个键将不同的DataFrame连接在一起&#xff0c;类似于SQL数据库中的合并操作。 数据连接的类型 一对一的连接&#xff1a; df1 pd.DataFrame({employee: [Bob, Jake, Lisa, Sue], grou…

电容的耐压值是什么意思呢?

电容是什么&#xff1f; 电容是一种能以电荷的形式储存能量的装置。与同样大小的电池相比&#xff0c;电容能储存的能量要小得多&#xff0c;大约1w个电容存储的能量才顶一节电池存储的能量&#xff0c;但对于许多电路设计来说却足够使用了。 看下图的直插式电容&#xff0c;…

[github配置] 远程访问仓库以及问题解决

作者&#xff1a;20岁爱吃必胜客&#xff08;坤制作人&#xff09;&#xff0c;近十年开发经验, 跨域学习者&#xff0c;目前于新西兰奥克兰大学攻读IT硕士学位。荣誉&#xff1a;阿里云博客专家认证、腾讯开发者社区优质创作者&#xff0c;在CTF省赛校赛多次取得好成绩。跨领域…

V100 GPU服务器安装CUDA教程

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

Pycharm中添加Python库指南

一、介绍 Pycharm是一款为Python开发者提供的集成开发环境&#xff08;IDE&#xff09;&#xff0c;支持执行、调试Python代码&#xff0c;并提供了许多有用的工具和功能&#xff0c;其中之一就是在Pycharm中添加Python库。 添加Python库有许多好处&#xff0c;比如能够增加开…

【Django-DRF用法】多年积累md笔记,第3篇:Django-DRF的序列化和反序列化详解

本文从分析现在流行的前后端分离Web应用模式说起&#xff0c;然后介绍如何设计REST API&#xff0c;通过使用Django来实现一个REST API为例&#xff0c;明确后端开发REST API要做的最核心工作&#xff0c;然后介绍Django REST framework能帮助我们简化开发REST API的工作。 全…

从0开始学习JavaScript--深入探究JavaScript类型化数组

JavaScript类型化数组是一种特殊的数组类型&#xff0c;引入了对二进制数据的更底层的操作。这种数组提供了对内存中的二进制数据直接进行读写的能力&#xff0c;为处理图形、音频、视频等大规模数据提供了高效的手段。本文将深入探讨JavaScript类型化数组的基本概念、常见类型…

python的socket模块以及通信相关学习笔记

Socket又称"套接字"&#xff0c;应用程序通常通过"套接字"向网络发出请求或者应答网络请求&#xff0c;使主机间或者一台计算机上的进程间可以通讯(最初设计是为了是使同一台计算机中的不同进程进行信息传递通信)&#xff0c;最后拓展到可以使网络上两台计…

数据分析基础之《jupyter notebook工具》

一、安装库 1、linux库 yum install python3-devel 2、python库 pip3 install -U matplotlib pip3 install -U numpy pip3 install -U pandas pip3 install -U TA-Lib pip3 install -U tables pip3 install -U notebook 3、如果TA-Lib安装不上&#xff0c;先手动安装依赖库 …

利用 Pandoc + ChatGPT 优雅地润色论文,并保持 Word 公式格式:Pandoc将Word和LaTeX文件互相转化

论文润色完美解决方案&#xff1a;Pandoc 与 ChatGPT 的强强联合 写在最前面其他说明 一、通过 Pandoc 将 Word 转换为 LaTeX 的完整指南步骤 1: 安装 PandocWindows:macOS:Linux: 步骤 2: 准备 Word 文档步骤 3: 转换文档步骤 4: 检查并调整输出步骤 5: 编译 LaTeX 文档总结 二…

分发糖果(贪心算法)

题目描述 n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。 你需要按照以下要求&#xff0c;给这些孩子分发糖果&#xff1a; 每个孩子至少分配到 1 个糖果。相邻两个孩子评分更高的孩子会获得更多的糖果。 请你给每个孩子分发糖果&#xff0c;计算并返回…

requests爬虫IP连接初始化问题及解决方案

问题背景 在使用HTTPS爬虫IP连接时&#xff0c;如果第一次请求是chunked方式&#xff0c;那么HTTPS爬虫IP连接将不会被初始化。这个问题可能会导致403错误&#xff0c;或者在使用HTTPS爬虫IP时出现SSL错误。 解决方案 为了解决这个问题&#xff0c;我们可以在requests库的ada…

element ui修改select选择框背景色和边框色

一、修改时间输入框的背景和边框字体颜色 <div class"hright"><el-date-picker :popper-append-to-body"false" class"custom-timeselect" v-model"form.timevalue" type"daterange" range-separator"至"…