11.16~11.19绘制图表,导入EXCEL中数据,进行拟合

这个错误通常是由于传递给curve_fit函数的数据类型不正确引起的。根据你提供的代码和错误信息,有几个可能的原因:

  1. 数据类型错误:请确保ce_datalg_dataproduct_data是NumPy数组或类似的可迭代对象,且其元素的数据类型为浮点数。你可以使用print(type(ce_data))等语句检查数据类型。

  2. 数据维度不匹配:curve_fit函数的第一个参数是要拟合的模型函数,其后的参数应该是要拟合的数据。根据你的代码,模型函数是reaction_model,而数据是(ce_data, lg_data)product_data。请确保数据的维度匹配,即ce_datalg_dataproduct_data具有相同的长度或形状。

  3. 数据元素过于复杂:错误信息中的"object too deep for desired array"提示可能是由于数据元素过于复杂而导致的。在使用curve_fit函数之前,确保数据不包含任何复杂对象或嵌套结构。如果数据中包含复杂对象,可以尝试将其转换为简单的数值或处理数据以满足函数的要求。

检查以上可能的原因,并根据需要调整代码和数据类型,以解决这个错误。

绘制图表

  • fig = plt.figure() 创建一个新的图形窗口。
  • ax = fig.add_subplot(111, projection='3d') 在图形窗口中添加一个三维子图(子图索引为111),并指定投影方式为3D。
  • ax.scatter(x1, x2, y, c='b', marker='o') 在三维子图中绘制散点图,其中x1x2表示两个自变量的值,y表示因变量的值。参数c设置散点的颜色为蓝色('b'),marker设置散点的形状为圆形('o')。

多项式回归

将excel导入进python

只有excel和py的主文件在同一目录下时才可以只写文件名,不然就必须写地址,即使在桌面上也不可以

data = pd.read_excel('C:/Users/26861/Desktop/Annex I- Pyrolysis Product Yields of Three Pyrolysis Combinations.xlsx')

还有就是地址可以用/,用\可能会出现转义字符 

import pandas as pd
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression# 读取Excel文件
data = pd.read_excel('data.xlsx')# 提取自变量和因变量数据
X = data['自变量列名'].values.reshape(-1, 1)  # 将自变量数据转换为二维数组
Y = data['因变量列名'].values.reshape(-1, 1)  # 将因变量数据转换为二维数组# 创建多项式特征
poly_features = PolynomialFeatures(degree=2)
X_poly = poly_features.fit_transform(X)# 拟合模型
model = LinearRegression()
model.fit(X_poly, Y)# 进行预测
Y_pred = model.predict(X_poly)# 打印拟合结果
print(Y_pred)# 可以继续进行可视化等操作...
# 生成一系列连续的自变量值,用于绘制曲线
X_plot = np.linspace(0, 1.2, 100).reshape(-1, 1)
X_plot_poly = poly_features.transform(X_plot)# 进行预测
Y_pred = model.predict(X_plot_poly)# 绘制原始数据点
plt.scatter(X, Y, color='blue', label='原始数据')# 绘制拟合曲线
plt.plot(X_plot, Y_pred, color='red', label='拟合曲线')# 设置图例和标签
plt.legend()
plt.xlabel('自变量')
plt.ylabel('因变量')
plt.title('多项式回归拟合')# 显示图形
plt.show()
import pandas as pd
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
# 读取Excel文件
data = pd.read_excel('C:/Users/26861/Desktop/Annex I- Pyrolysis Product Yields of Three Pyrolysis Combinations.xlsx')# 提取自变量和因变量数据
X = data['DFA/CS'].values.reshape(-1, 1)  # 将自变量数据转换为二维数组
Y = data['Tar yield'].values.reshape(-1, 1)  # 将因变量数据转换为二维数组# 创建多项式特征
poly_features = PolynomialFeatures(degree=2)
X_poly = poly_features.fit_transform(X)# 拟合模型
model = LinearRegression()
model.fit(X_poly, Y)# 进行预测
Y_pred = model.predict(X_poly)# 打印拟合结果
print(Y_pred)# 可以继续进行可视化等操作...
# 生成一系列连续的自变量值,用于绘制曲线
X_plot = np.linspace(0, 1.2, 100).reshape(-1, 1)
X_plot_poly = poly_features.transform(X_plot)# 进行预测
Y_pred = model.predict(X_plot_poly)# 绘制原始数据点
plt.scatter(X, Y, color='blue', label='point')# 绘制拟合曲线
plt.plot(X_plot, Y_pred, color='red', label='curve')# 设置图例和标签
plt.legend()
plt.xlabel('DFA/CS')
plt.ylabel('Tar yelid')
plt.title('curve')# 显示图形
plt.show()

在从Excel提取自变量和因变量后,将它们转换为二维数组的原因是为了与某些库和函数的要求相匹配。

许多机器学习和数据分析库(如scikit-learn、NumPy等)通常期望输入数据是二维数组的形式,其中每个样本位于行中,每个特征位于列中。通过将自变量和因变量转换为二维数组,可以将数据结构化并满足库和函数的要求。

对于自变量,如果你只有一个自变量列,你可以使用NumPy的`reshape`函数将其转换为二维数组。假设自变量数组为`X`,你可以使用以下代码转换为二维数组:

```python
import numpy as np
X = np.array(X).reshape(-1, 1)
```

这将将`X`数组从一维数组转换为二维数组,其中样本位于行中,特征位于列中。`-1`参数表示自动推断行数,`1`表示列数为1。

对于因变量,如果你有多个因变量列,你可以将它们合并为一个二维数组。假设因变量数组为`Y1`、`Y2`、`Y3`,你可以使用以下代码将它们合并为一个二维数组:

```python
import numpy as np
Y = np.column_stack((Y1, Y2, Y3))
```

这将使用`column_stack`函数将`Y1`、`Y2`和`Y3`列堆叠在一起,形成一个二维数组,其中每个列对应一个因变量。

通过将自变量和因变量转换为二维数组,你可以更方便地使用各种库和函数进行数据分析、建模和拟合操作。

希望这能解答你的问题!如果还有其他问题,请随时提问。

import pandas as pd
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
# 读取Excel文件
data = pd.read_excel('C:/Users/26861/Desktop/Annex I- Pyrolysis Product Yields of Three Pyrolysis Combinations.xlsx')# 提取自变量和因变量数据
X = data['DFA/CS'].values. Reshape(-1, 1)  # 将自变量数据转换为二维数组
Y1 = data['Tar yield'].values. Reshape(-1, 1)  # 将因变量数据转换为二维数组
Y2 = data['Water yield'].values. Reshape(-1, 1)
Y3 = data['Char yield'].values. Reshape(-1, 1)
Y4 = data['Syngas yield'].values.reshape(-1, 1)
# 创建多项式特征
poly_features = PolynomialFeatures(degree=2)
X_poly = poly_features.fit_transform(X)# 拟合模型
model = LinearRegression()
model.fit(X_poly, Y1)
model.fit(X_poly, Y2)
model.fit(X_poly, Y3)
model.fit(X_poly, Y4)
# 进行预测
Y_pred = model.predict(X_poly)# 打印拟合结果
print(Y_pred)# 可以继续进行可视化等操作...
# 生成一系列连续的自变量值,用于绘制曲线
X_plot = np.linspace(0, 1.2, 100).reshape(-1, 1)
X_plot_poly = poly_features.transform(X_plot)# 进行预测
Y_pred = model.predict(X_plot_poly)# 绘制原始数据点
plt.scatter(X, Y, color='blue', label='point')# 绘制拟合曲线
plt.plot(X_plot, Y_pred, color='red', label='curve')# 设置图例和标签
plt.legend()
plt.xlabel('DFA/CS')
plt.ylabel('Tar yelid')
plt.title('curve')# 显示图形
plt.show()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit# 从Excel文件中读取数据
data = pd.read_excel('C:/Users/26861/Desktop/Annex I- Pyrolysis Product Yields of Three Pyrolysis Combinations.xlsx')# 提取自变量数据列
x = data['DFA/CS'].values# 提取多个因变量数据列
y_columns = ['Tar yield', 'Water yield', 'Char yield','Syngas yield']  # 替换为实际的数据列名称# 自定义拟合函数
def func(x, a, b):return a * x + b# 创建图形窗口和子图
fig, axs = plt.subplots(len(y_columns), 1, figsize=(8, 6), sharex=True)# 遍历每个因变量数据列
for i, y_column in enumerate(y_columns):# 提取因变量数据列y = data[y_column].values# 执行拟合params, _ = curve_fit(func, x, y)# 生成拟合曲线fit = func(x, *params)# 绘制原始数据点和拟合曲线axs[i].scatter(x, y, label='Data')axs[i].plot(x, fit, label='Fit')# 添加图例axs[i].legend()# 设置整体图形的标题和横轴标签
fig.suptitle('Fitted Curves')
plt.xlabel('X')# 调整子图之间的间距
plt.tight_layout()# 显示图形
plt.show()

得到EXCEL中,

每个单元格在其所在行中的占比

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit# 从Excel文件中读取数据
data = pd.read_excel('C:/Users/26861/Desktop/Annex I- Pyrolysis Product Yields of Three Pyrolysis Combinations.xlsx')# 提取自变量数据列
x = data['DFA/CS'].values# 提取多个因变量数据列
y_columns = ['Tar yield', 'Water yield', 'Char yield','Syngas yield']  # 替换为实际的数据列名称# 多项式拟合阶数
degree = 2# 创建图形窗口和子图
fig, axs = plt.subplots(len(y_columns), 1, figsize=(8, 6), sharex=True)# 遍历每个因变量数据列
for i, y_column in enumerate(y_columns):# 提取因变量数据列y = data[y_column].values# 执行拟合coeffs = np.polyfit(x, y, degree)poly = np.poly1d(coeffs)fit = poly(x)# 绘制原始数据点和拟合曲线axs[i].scatter(x, y, label='Data')axs[i].plot(x, fit, label='Fit')# 添加图例axs[i].legend()# 输出拟合函数的具体信息print(f"Fitted function for {y_column}:")print(poly)# 设置整体图形的标题和横轴标签
fig.suptitle('Fitted Curves')
plt.xlabel('X')# 调整子图之间的间距
plt.tight_layout()# 显示图形
plt.show()
import pandas as pd
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt# 自定义指数函数
def exponential_func(x, a, b, c):return a * np.exp(b * x) + c# 从Excel文件中读取数据
df = pd.read_excel('C:/Users/26861/Desktop/Annex I- Pyrolysis Product Yields of Three Pyrolysis Combinations.xlsx')
x_data = df['DFA/CS'].values
y_data = df[['Tar yield', 'Water yield', 'Char yield','Syngas yield']].values.Tprint(x_data,y_data)
# 创建子图
fig, axs = plt.subplots(2, 2, figsize=(10, 8))# 针对每个因变量进行拟合和绘图
for i, ax in enumerate(axs.flat):y = y_data[i]  # 当前因变量的数据# 进行拟合popt, pcov = curve_fit(exponential_func, x_data, y, maxfev=10000)  # 增加maxfev的值# 绘制拟合曲线x_fit = np.linspace(min(x_data), max(x_data), 100)y_fit = exponential_func(x_fit, *popt)ax.plot(x_fit, y_fit, label='Fit Curve')# 绘制原始数据点ax.scatter(x_data, y, label='Data')# 显示方程信息equation_info = f'y = {popt[0]:.2f} * exp({popt[1]:.2f} * x) + {popt[2]:.2f}'ax. Text(2, max(y) / 2, equation_info)ax.set_xlabel('x')ax.set_ylabel('y')ax.set_title(f'Fit Curve for Variable {i+1}')ax.legend()# 调整子图布局
plt.tight_layout()# 显示图表
plt.show()
return a * np.exp(-(x - b)**2 / (2 * c**2)) + d
# 非线性最小二乘拟合
popt, pcov = curve_fit(exponential_func, x_data, y_data, maxfev=100000,p0=(1, -1, 1))

拟合时初始值很重要

curve_fit就是最小二乘拟合

对于单调减的初始值设为-1,开始时增加的,设为1

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fitx_data = np.array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.])
y_data = np.array([19.46, 17.25, 15.43, 14.14, 13.89, 13.21, 12.84, 12.57, 12.13])def exponential_func(x, a, b, c, d):return a * np.exp(b * x + d) + cpopt, pcov = curve_fit(exponential_func, x_data, y_data, p0=(1, -1, 1, 0))a_fit, b_fit, c_fit, d_fit = popt
expression = f"{a_fit:.4f} * exp({b_fit:.4f} * x + {d_fit:.4f}) + {c_fit:.4f}"
print("expression:", expression)x_fit = np.linspace(min(x_data), max(x_data), 100)
y_fit = exponential_func(x_fit, *popt)plt.plot(x_fit, y_fit, label='Predicted value')
plt.scatter(x_data, y_data, label='Actual')
plt.xlabel('Mixing ratio of DFA/CS')
plt.ylabel('Tar yield')
plt.title('Kinetic model')
plt.legend()
plt.show()y_pred = exponential_func(x_data, *popt)
comparison_table = np.column_stack((x_data, y_data, y_pred))
print("\nA table comparing predicted values to actual values:")
print("r     Actual      Predicted value")
print("-------------------------")
for row in comparison_table:print(f"{row[0]:.1f}    {row[1]:.2f}    {row[2]:.2f}")

多元线性回归拟合以及摘要 

import pandas as pd
import numpy as np
import statsmodels.api as sm
# 指定 Excel 文件路径
excel_file = 'C:/Users/26861/Desktop/Annex II-Pyrolysis Gas Yields of Three Pyrolysis Combinations.xlsx'
# 提取 X 列的数据作为自变量
df = pd.read_excel(excel_file)X = df[['H2CE', 'H2LG']]
y = df['H2CS']# 添加常数列
X = sm.add_constant(X)# 拟合多元线性回归模型
model = sm.OLS(y, X)
results = model.fit()# 打印回归结果摘要
print(results.summary())
equation = 'y = {:.4f} + {:.4f}*X1 + {:.4f}*X2 '.format(results.params['const'], results.params['H2CE'], results.params['H2LG'])
print(equation)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/199693.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#,怎么修改(VS)Visual Studio 2022支持的C#版本

一些文字来自于 Microsoft . (只需要读下面的红色文字即可!) 1 C# 语言版本控制 最新的 C# 编译器根据项目的一个或多个目标框架确定默认语言版本。 Visual Studio 不提供用于更改值的 UI,但可以通过编辑 .csproj 文件来更改值。…

基于SSM的学院网站设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

4.3 Windows驱动开发:监控进程与线程对象操作

在内核中,可以使用ObRegisterCallbacks这个内核回调函数来实现监控进程和线程对象操作。通过注册一个OB_CALLBACK_REGISTRATION回调结构体,可以指定所需的回调函数和回调的监控类型。这个回调结构体包含了回调函数和监控的对象类型,还有一个A…

Camtasia2024年破解版安装包如何下载?

作为一个互联网人,没少在录屏软件这个坑里摸爬滚打。培训、学习、游戏、影视解说……都得用它。这时候没个拿得出手的私藏软件,还怎么混?说实话,录屏软件这两年也用了不少,基本功能是有但总觉得缺点什么,直…

C进阶---文件操作

我们在日常使用电脑保存文件时,其目的就是为了便于以后查看、修改、更新等操作;保存在文件中可以使数据持久化,所以今天我们家里学习文件的相关操作。 一、文件 1.1什么是文件 磁盘上的文件是文件。 在程序设计中,文件一般分…

某60区块链安全之51%攻击实战学习记录

区块链安全 文章目录 区块链安全51%攻击实战实验目的实验环境实验工具实验原理攻击过程 51%攻击实战 实验目的 1.理解并掌握区块链基本概念及区块链原理 2.理解区块链分又问题 3.理解掌握区块链51%算力攻击原理与利用 4.找到题目漏洞进行分析并形成利用 实验环境 1.Ubuntu1…

基于RK3588全高端智能终端机器人主板

一、小尺寸板型设计 该款主板为小型板,尺寸仅为125*85mm,更小更紧凑,可完美适应各类高端智能自助终端; 二、八核高端处理器 采用RK3588S八核64位处理器,8nm LP制程,主频最高达2.4GHz,搭载Andr…

解决requests 2.28.x版本SSL错误:证书验证失败

1、问题背景 在使用requests 2.28.1版本时,我进行HTTP post传输报告负载时,由于SSL验证设置为True,请求失败,错误如下:(Caused by SSLError(SSLCertVerificationError(1, ‘[SSL: CERTIFICATE_VERIFY_FAILED] certifi…

对OpenAI CEO奥特曼突然被解雇事件的一些分析

今天也来凑个热闹,说说OpenAI的事。本来不想写的,但是看到自媒体又开始胡说八道,所以根据我自己得到的消息和理解说一说我的看法,这篇文章要是有个小姐姐解说录成视频,那肯定火了,但是我现在没资源&#xf…

Oauth2认证及Spring Security Oauth2授权码模式

Oauth2认证 Oauth2简介 简介 第三方认证技术方案最主要是解决认证协议的通用标准问题,因为要实现跨系统认证,各系统之间要遵循一定的接口协议。 OAUTH协议为用户资源的授权提供了一个安全的、开放而又简易的标准。同时,任何第三方都可以使…

本地/笔记本/纯 cpu 部署、使用类 gpt 大模型

文章目录 1. 安装 web UI1.1. 下载代码库1.2. 创建 conda 环境1.3. 安装 pytorch1.4. 安装 pip 库 2. 下载大模型3. 使用 web UI3.1. 运行 UI 界面3.2. 加载模型3.3. 进行对话 使用 web UI 大模型文件,即可在笔记本上部署、使用类 gpt 大模型。 1. 安装 web UI 1…

php一句话木马免杀

php一句话木马免杀 针对于php一句话木马做免杀: 利用php动态函数的特性,将危险函数拆分成字符,最终使用字符串拼接的方式,然后重新拼接,后加括号执行代码,并且可以使用花指令进行包装,如无限i…

C++ DAY06 c++多态

简介 一个事物的多种形态 , 简称多态 物的多态 同一个人在不同人面前展现是不同的 如 : 在我面前 在对象面前 在朋友面前 在父母面前 事的多态 吃饭 中国人 筷子 熟食 美国人 刀叉 7 分熟 日本人 筷子 生食 印度人 手 睡觉 中国人 床上 日本人 榻榻米 侧卧 平躺…

【U8+】用友U8账套引入/还原,提示:逻辑文件‘UFModel’不是数据库的一部分。

【问题描述】 用友U8+账套引入(恢复账套)的时候,提示: 逻辑文件‘UFModel’不是数据库‘UFDATA_001_2015’的一部分。 请使用RESTORE FILELISTONLY来列出逻辑文件名。-2147217900 【解决方法】 查看用友U8+账套库正确的逻辑名称为【UFMODEL】和【UFMODEL_log】。 【案例…

​分享mfc140u.dll丢失的解决方法,针对原因解决mfc140u.dll丢失的问题

作为电脑小白,如果电脑中出现了mfc140u.dll丢失的问题,肯定会比较的慌乱。但是出现mfc140u.dll丢失的问题,其实也有很简单的办法,所以大家不用慌张,接下来就教大家解决办法,能够有效的解决mfc140u.dll丢失的…

MFC 对话框

目录 一、对话款基本认识 二、对话框项目创建 三、控件操作 四、对话框创建和显示 模态对话框 非模态对话框 五、动态创建按钮 六、访问控件 控件添加控制变量 访问对话框 操作对话框 SendMessage() 七、对话框伸缩功能实现 八、对话框小项目-逃跑按钮 九、小项…

C#中的is和as的使用和区别

目录 概述一、is操作符1. is操作符的语法2. is操作符的用途3. is操作符的使用示例4. is操作符与typeof操作符的区别 二、as操作符1. as操作符的语法2. as操作符的用途3. as操作符的使用示例4. as操作符与is操作符的区别和联系5. as操作符与is操作符的区别总结 概述 在C#编程语…

探寻欧洲市场的机遇:深度剖析欧洲跨境电商

随着全球化的不断推进,欧洲作为一个经济发达、多元文化共存的大陆,成为跨境电商发展的重要目标。本文将深入剖析欧洲跨境电商的机遇,分析欧洲市场的特点、挑战与前景,为企业提供在这个充满潜力的市场中蓬勃发展的指导。 欧洲市场的…

【前端学java】java中的Object类(8)

往期回顾: 【前端学java】JAVA开发的依赖安装与环境配置 (0)【前端学 java】java的基础语法(1)【前端学java】JAVA中的packge与import(2)【前端学java】面向对象编程基础-类的使用 &#xff08…

YOLOv8-Seg改进:位置信息的轴线压缩增强注意力Sea_Attention| ICLR2023 SeaFormer,轻量级语义分割算法,复旦大学和腾讯

🚀🚀🚀本文改进:位置信息的轴线压缩增强注意力Sea_Attention,一方面将QKV特征进行轴线压缩后再注意力增强,另一方面将QKV特征使用卷积网络提升局部信息,最后将二者融合,输出增强特征 🚀🚀🚀Sea_Attention小目标分割首选,暴力涨点 🚀🚀🚀YOLOv8-seg创新…